Open this publication in new window or tab >>Show others...
2024 (English)In: Nature Communications, E-ISSN 2041-1723, Vol. 15, no 1, article id 315Article in journal (Refereed) Published
Abstract [en]
The resilience of cellular proteostasis declines with age, which drives protein aggregation and compromises viability. The nucleus has emerged as a key quality control compartment that handles misfolded proteins produced by the cytosolic protein biosynthesis system. Here, we find that age-associated metabolic cues target the yeast protein disaggregase Hsp104 to the nucleus to maintain a functional nuclear proteome during quiescence. The switch to respiratory metabolism and the accompanying decrease in translation rates direct cytosolic Hsp104 to the nucleus to interact with latent translation initiation factor eIF2 and to suppress protein aggregation. Hindering Hsp104 from entering the nucleus in quiescent cells results in delayed re-entry into the cell cycle due to compromised resumption of protein synthesis. In sum, we report that cytosolic-nuclear partitioning of the Hsp104 disaggregase is a critical mechanism to protect the latent protein synthesis machinery during quiescence in yeast, ensuring the rapid restart of translation once nutrients are replenished.
Place, publisher, year, edition, pages
Springer Nature, 2024
National Category
Cell and Molecular Biology
Identifiers
urn:nbn:se:umu:diva-219058 (URN)10.1038/s41467-023-44538-8 (DOI)001142908000001 ()38182580 (PubMedID)2-s2.0-85181445502 (Scopus ID)
Funder
Swedish Research Council, 2019-05249Swedish Research Council, 2019-04004Swedish Research Council, 2019-04052Knut and Alice Wallenberg Foundation, 2017.009Olle Engkvists stiftelse, 207-0527Swedish Cancer Society, 211865Swedish Cancer Society, 201045Swedish Cancer Society, 222488
2024-01-072024-01-072025-04-24Bibliographically approved