Umeå University's logo

umu.sePublications
Change search
Link to record
Permanent link

Direct link
Publications (10 of 37) Show all publications
Ren, J., Ye, K., Opoku, H., Li, Z., Edman, L. & Wang, J. (2025). Controlling the emission colour and chemical structure of carbon dots by catalysis-tuned conversion of ortho-aminophenol. Carbon, 231, Article ID 119706.
Open this publication in new window or tab >>Controlling the emission colour and chemical structure of carbon dots by catalysis-tuned conversion of ortho-aminophenol
Show others...
2025 (English)In: Carbon, ISSN 0008-6223, E-ISSN 1873-3891, Vol. 231, article id 119706Article in journal (Refereed) Published
Abstract [en]

The synthesis of carbon dots (CDs) with tailored properties commonly requires time-consuming trial-and-error experimentation, in part because of a poorly understood and controlled chemical conversion of the precursor material. Here, we first report on the solid-state pyrolysis or solvothermal conversion of an ortho-aminophenol (oAP) precursor, comprising ortho-disposed amino and hydroxyl groups on a benzene ring. We find that both conversion reactions resulted in a two emission-colour product, which could be separated into distinct blue-emitting CDs (bCDs, λpeak = 420 nm) and yellow-emitting CDs (yCDs, λpeak = 565 nm) by repetitive column chromatography. Systematic characterization revealed that both CDs comprise a planar graphene-like interior, but that they are distinguished by that the bCDs comprise an intermixed significant amino-rich fluorophore while the yCDs instead comprise a pyridinic-rich fluorophore. This implies that the bCDs are formed via activation of the amino group of the oAP precursor, whereas the synthesis of the yCDs constituted a simultaneous activation of both the amino and hydroxyl groups. With this knowledge at hand, we managed to direct the chemical conversion of the oAP precursor to yield either solely bCDs or yCDs by adding a catalyst (either the Lewis acid AlCl3·6H2O or the Lewis base NaOH) that selectively and efficiently activated only one of the reaction pathways. This demonstration is important in that it shows that the synthesis of CDs with desired properties can be realized with efficient rational instead of trial-and-error means.

Place, publisher, year, edition, pages
Elsevier, 2025
Keywords
Carbon dots, Ortho-aminophenol precursor, Catalysis, Controlled reactivity, Tuned properties
National Category
Chemical Engineering
Research subject
nanoparticles; Materials Science
Identifiers
urn:nbn:se:umu:diva-231258 (URN)10.1016/j.carbon.2024.119706 (DOI)001338661100001 ()2-s2.0-85206554631 (Scopus ID)
Funder
European Commission, 101096650The Kempe Foundations, SMK-21-0015The Kempe Foundations, SMK-1956Swedish Research Council, 2019–02345Swedish Research Council, 2020–04437Swedish Research Council, 2021–04778Bertil & Britt Svenssons Stiftelse för Belysningsteknik, 2021 höst-14Bertil & Britt Svenssons Stiftelse för Belysningsteknik, 2022 höst-31Knut and Alice Wallenberg Foundation, KAW 2022.0381
Available from: 2024-10-29 Created: 2024-10-29 Last updated: 2024-10-29Bibliographically approved
Ren, J., Liu, J., Wei, B., Zhang, W., Edman, L. & Wang, J. (2025). Deep-blue and narrowband-emitting carbon dots from a sustainable precursor for random lasing. ACS Applied Nano Materials, 8(5), 2472-2480
Open this publication in new window or tab >>Deep-blue and narrowband-emitting carbon dots from a sustainable precursor for random lasing
Show others...
2025 (English)In: ACS Applied Nano Materials, E-ISSN 2574-0970, Vol. 8, no 5, p. 2472-2480Article in journal (Refereed) Published
Abstract [en]

Deep-blue (DB) emitters that feature high photoluminescence quantum yield (PLQY) and narrow spectral bandwidth are desired for a variety of optoelectronic applications, particularly for lighting, illumination, and lasing. Currently favored DB emitters constitute quantum dots comprising cadmium or lead and organic compounds derived from petroleum, but they suffer from toxicity and sustainability issues. Here, we report the solvothermal synthesis of DB-emitting carbon dots (DB-CDs) using bioderivable phloroglucinol as the sole starting material, which exhibit a peak emission wavelength of 403 nm, narrow spectral full width at half-maximum of 35 nm, and high PLQY of 61% in ethanol. The DB-CDs with a planar structure are demonstrated to comprise distinct graphene segments in a polyether-cross-link network, with the former functioning as the fluorophore. The application merit of the DB-CDs is exemplified by their implementation as the gain medium in a random laser device, which exhibits a threshold optical power density of 40.5 kW cm-2. This study thus demonstrates a path toward efficient and sustainable deep-blue emitters, which can be exploited in practical applications.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2025
Keywords
carbon dots, deep-blue emission, high photoluminescence quantum yield, narrowband emission, random lasing, sustainable precursor
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:umu:diva-235722 (URN)10.1021/acsanm.4c06734 (DOI)001409937100001 ()39944555 (PubMedID)2-s2.0-85216623619 (Scopus ID)
Funder
Swedish Research Council, 2019-02345Swedish Research Council, 2020-04437Swedish Research Council, 2021-04778Bertil & Britt Svenssons Stiftelse för Belysningsteknik, 2021 höst-14Bertil & Britt Svenssons Stiftelse för Belysningsteknik, 2022 höst-31Knut and Alice Wallenberg Foundation, KAW 2022.0381
Available from: 2025-02-24 Created: 2025-02-24 Last updated: 2025-02-24Bibliographically approved
Ren, J., Liu, J., Qu, D., Menon, S. S., Wei, B. & Wang, J. (2025). Dual-functional carbon dot films: blue-light filtration and cyan-light conversion for healthier white light-emitting diodes. Nano Letters, 25(5), 2082-2087
Open this publication in new window or tab >>Dual-functional carbon dot films: blue-light filtration and cyan-light conversion for healthier white light-emitting diodes
Show others...
2025 (English)In: Nano Letters, ISSN 1530-6984, E-ISSN 1530-6992, Vol. 25, no 5, p. 2082-2087Article in journal (Refereed) Published
Abstract [en]

Blue light emitted by commercial white light-emitting diodes (WLEDs) in the 440-470 nm range poses ocular health risks with prolonged exposure. Effective filtration is crucial for health-conscious lighting, but traditional filters often cause color distortion by completely removing blue emission. In this study, we address this challenge by synthesizing carbon dots (CDs) with strong absorption at 460 nm and bright cyan emission at 485 nm, featuring a photoluminescence quantum yield of 65% and a narrow full width at half-maximum of 30 nm. When embedded in a poly(vinyl alcohol) (PVA) matrix, the CDs@PVA films effectively filter UV-to-blue light, reducing the blue-light ratio from 27.2% to 2.7%. At the same time, the cyan emission preserves the white light’s spectral composition, achieving a color rendering index of 83 ± 5. This dual functionality demonstrates the potential of CDs to enable safer WLEDs that improve both ocular health and lighting quality.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2025
Keywords
blue light filtration, Carbon dots, cyan emission, narrow bandwidth, white light-emitting diodes
National Category
Atom and Molecular Physics and Optics Condensed Matter Physics
Identifiers
urn:nbn:se:umu:diva-234884 (URN)10.1021/acs.nanolett.4c06272 (DOI)001403606600001 ()39846403 (PubMedID)2-s2.0-85216017845 (Scopus ID)
Funder
The Kempe Foundations, SMK-21-0015The Kempe Foundations, JCSMK23-198Swedish Research Council, 2020-04437
Available from: 2025-02-10 Created: 2025-02-10 Last updated: 2025-02-10Bibliographically approved
Opoku, H., Ren, J., Zhou, X., Zhang, P., Tang, S., Dang, D., . . . Wang, J. (2025). Efficient UV emission from carbon dots derived from a green-tea extract. Nano Reseach, 18(4), Article ID 94907321.
Open this publication in new window or tab >>Efficient UV emission from carbon dots derived from a green-tea extract
Show others...
2025 (English)In: Nano Reseach, ISSN 1998-0124, E-ISSN 1998-0000, Vol. 18, no 4, article id 94907321Article in journal (Refereed) Published
Abstract [en]

Emissive carbon dots (CDs) that are synthesized from biomass can be highly sustainable, but the number of reported biomass-derived CDs that emit in the ultraviolet (UV) range is small. Moreover, current commercial UV-emitting materials rely heavily on the use of non-sustainable resources, such as rare metals, heavy metals, and petroleum chemicals. This yields that the development of efficient biomass-derived UV-CDs is desired. Here, we report on the hydrothermal conversion of a common green-tea extract (Polyphenon 60) into UV-CDs, which feature a photoluminescence (PL) peak wavelength of 384 nm, a full width at half maximum of 72 nm, and a photoluminescence quantum yield (PLQY) of 17% in water. By shifting to a lower-polarity solvent of 3-phenoxyanisole, the PLQY is strongly enhanced to 81%, and the PL peak blue-shifts to 370 nm, while the maximum solubility is lowered. These observations support the notion that the UV-CDs feature aggregation-induced emission and that they are endowed with hydrophilic surface groups. Moreover, the findings of excitation-wavelength-independent PL and a nanosecond-level short emission lifetime reveal that it is a single distinct fluorophore that produces the UV emission. We finally report preliminary results that the UV-CDs exhibit potential for inhibiting the proliferation of cancer cells.

Place, publisher, year, edition, pages
Tsinghua University Press, 2025
Keywords
aggregation-induced-emission, biomass, carbon dots, cell proliferation inhibitor, ultraviolet (UV) emission
National Category
Materials Chemistry Condensed Matter Physics
Identifiers
urn:nbn:se:umu:diva-238358 (URN)10.26599/NR.2025.94907321 (DOI)001469490100001 ()2-s2.0-105003157223 (Scopus ID)
Funder
Swedish Research Council, 2019- 02345Swedish Research Council, 2020-04437Swedish Research Council, 2021-04778Bertil & Britt Svenssons Stiftelse för Belysningsteknik, 2021 höst-14Bertil & Britt Svenssons Stiftelse för Belysningsteknik, 2022 höst-31Knut and Alice Wallenberg Foundation, KAW 2022.0381
Available from: 2025-05-22 Created: 2025-05-22 Last updated: 2025-05-22Bibliographically approved
Kasi, P. B., Opoku, H., Novikova, L. N., Wiberg, M., Kingham, P. J., Wang, J. & Novikov, L. N. (2025). Quercetin-derived carbon dots promote proliferation and migration of Schwann cells and enhance neurite outgrowth. Colloids and Surfaces B: Biointerfaces, 251, Article ID 114609.
Open this publication in new window or tab >>Quercetin-derived carbon dots promote proliferation and migration of Schwann cells and enhance neurite outgrowth
Show others...
2025 (English)In: Colloids and Surfaces B: Biointerfaces, ISSN 0927-7765, E-ISSN 1873-4367, Vol. 251, article id 114609Article in journal (Refereed) Published
Abstract [en]

Quercetin, a flavonoid known for its antioxidant properties, has recently garnered attention as a potential neuroprotective agent for treatment of the injured nervous system. The repair of peripheral nerve injuries hinges on the proliferation and migration of Schwann cells, which play a crucial role in supporting axonal growth and myelination. In this study we synthesized Quercetin-derived carbon dots (QCDs) and investigated their effects on cultured Schwann cells and the NG108-15 cell line. QCDs was obtained by solvothermal synthesis and characterized via UV–vis absorption spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction analysis. The particles demonstrated significant dose-dependent free radical scavenging activity in DPPH and ABTS radical scavenging assays, supported in vitro proliferation and migration of Schwann cells, expression of neurotrophic and angiogenic growth factors, and stimulated neurite outgrowth from NG108-15 cells. Thus, QCDs could serve as a potential novel treatment strategy to promote regeneration in the injured peripheral nervous system.

Place, publisher, year, edition, pages
Elsevier, 2025
Keywords
Nanomedicine, Neurite outgrowth, Quercetin-derived carbon dots, Schwann cells, Solvothermal synthesis
National Category
Surgery Neurosciences
Identifiers
urn:nbn:se:umu:diva-237024 (URN)10.1016/j.colsurfb.2025.114609 (DOI)001446920800001 ()40073625 (PubMedID)2-s2.0-86000649475 (Scopus ID)
Funder
Vinnova, 2017-02130The Kempe Foundations, SMK-21-0015Swedish Research Council, 2020-04437Bertil & Britt Svenssons Stiftelse för Belysningsteknik, 2021höst-14
Available from: 2025-03-31 Created: 2025-03-31 Last updated: 2025-03-31Bibliographically approved
Tang, S., Tsuchiya, Y., Wang, J., Adachi, C. & Edman, L. (2025). White light-emitting electrochemical cells based on metal-free TADF emitters. Nature Communications, 16(1), Article ID 653.
Open this publication in new window or tab >>White light-emitting electrochemical cells based on metal-free TADF emitters
Show others...
2025 (English)In: Nature Communications, E-ISSN 2041-1723, Vol. 16, no 1, article id 653Article in journal (Refereed) Published
Abstract [en]

The attainment of white emission from a light-emitting electrochemical cell (LEC) is important, since it enables illumination and facile color conversion from devices that can be cost-efficient and sustainable. However, a drawback with current white LECs is that they either employ non-sustainable metals as an emitter constituent or are intrinsically efficiency limited by that the emitter only converts singlet excitons to photons. Organic compounds that emit by thermally activated delayed fluorescence (TADF) can address these issues since they can harvest all excitons for light emission while being metal free. Here, we report on the first white LEC based on solely metal-free TADF emitters, as accomplished through careful tuning of the energy-transfer processes and the electrochemically formed doping structure in the single-layer active material. The designed TADF-LEC emits angle-invariant white light (color rendering index = 88) with an external quantum efficiency of 2.1 % at a luminance of 350 cd/m2.

Place, publisher, year, edition, pages
Springer Nature, 2025
National Category
Other Physics Topics
Identifiers
urn:nbn:se:umu:diva-234875 (URN)10.1038/s41467-025-55954-3 (DOI)001397956900008 ()39809760 (PubMedID)2-s2.0-85215758803 (Scopus ID)
Funder
Swedish Research Council, 2019-02345Swedish Research Council, 2021-04778Swedish Energy Agency, 50779-1Swedish Energy Agency, P2021-00032Bertil & Britt Svenssons Stiftelse för BelysningsteknikThe Kempe FoundationsOlle Engkvists stiftelseKnut and Alice Wallenberg Foundation, KAW 2022.0381Knut and Alice Wallenberg Foundation, WISE-AP01-D02EU, European Research Council, 101096650
Available from: 2025-02-06 Created: 2025-02-06 Last updated: 2025-02-06Bibliographically approved
Liu, Y., Wang, X., Gao, Z., Yu, W., Yang, J., Xu, F., . . . Zhou, M. (2024). Capping ligand engineering of cadmium-free AIZS quantum dots toward bright electroluminescent light-emitting diodes by all-solution process. Advanced Materials Interfaces, 11(31), Article ID 2400385.
Open this publication in new window or tab >>Capping ligand engineering of cadmium-free AIZS quantum dots toward bright electroluminescent light-emitting diodes by all-solution process
Show others...
2024 (English)In: Advanced Materials Interfaces, ISSN 2196-7350, Vol. 11, no 31, article id 2400385Article in journal (Refereed) Published
Abstract [en]

Cadmium-free AgInZnS (AIZS) quantum dots (QDs) have garnered significant research interest for applications in light-emitting diodes (LEDs); however, their performance remains limited by insulating long-chain ligands. In this study, highly fluorescent orange-emitting AIZS QDs are synthesized by replacing long-chain 1-dodecanethiol (DDT) with short-chain 1-octanethiol (OTT), achieving photoluminescence quantum yields of up to 80% in solution and 60% in film. The incorporation of OTT in combination with oleic acid and oleylamine as co-capping ligands enabled excellent dispersion of the QDs in non-polar solvents. The resulting OTT-capped AIZS QDs exhibited improved film smoothness and reduced nonradiative recombination. Furthermore, all-solution-processed QD light-emitting diodes (QLEDs) are fabricated comprising indium tin oxide/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate/hole transporting layer/AIZS QDs/ZnO electron transporting layer/Al. The effects of OTT capping and the thickness of the AIZS emitting layer on device performance are systematically evaluated. As a result, the QLEDs demonstrated enhanced luminance and current efficiency, reaching 515 cd m−2 and 0.4 cd A−1 respectively, representing improvements of over 50% and 33% compared to devices utilizing DDT-capped AIZS QDs. This study presents a facile and effective approach for developing high-brightness AIZS QLEDs.

Place, publisher, year, edition, pages
Wiley-VCH Verlagsgesellschaft, 2024
Keywords
cadmium-free AgInZnS quantum dots, ectroluminescent light-emitting diodes, ligand engineering, optimization of functional layers
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:umu:diva-229908 (URN)10.1002/admi.202400385 (DOI)001310067200001 ()2-s2.0-85203715522 (Scopus ID)
Funder
The Kempe Foundations, SMK1849The Kempe Foundations, SMK21-0015Bertil & Britt Svenssons Stiftelse för Belysningsteknik
Available from: 2024-09-25 Created: 2024-09-25 Last updated: 2024-12-05Bibliographically approved
Ren, J., Opoku, H., Tang, S., Edman, L. & Wang, J. (2024). Carbon dots: a review with focus on sustainability. Advanced Science
Open this publication in new window or tab >>Carbon dots: a review with focus on sustainability
Show others...
2024 (English)In: Advanced Science, E-ISSN 2198-3844Article, review/survey (Refereed) Epub ahead of print
Abstract [en]

Carbon dots (CDs) are an emerging class of nanomaterials with attractive optical properties, which promise to enable a variety of applications. An important and timely question is whether CDs can become a functional and sustainable alternative to incumbent optical nanomaterials, notably inorganic quantum dots. Herein, the current CD literature is comprehensively reviewed as regards to their synthesis and function, with a focus on sustainability aspects. The study quantifies why it is attractive that CDs can be synthesized with biomass as the sole starting material and be free from toxic and precious metals and critical raw materials. It further describes and analyzes employed pretreatment, chemical-conversion, purification, and processing procedures, and highlights current issues with the usage of solvents, the energy and material efficiency, and the safety and waste management. It is specially shown that many reported synthesis and processing methods are concerningly wasteful with the utilization of non-sustainable solvents and energy. It is finally recommended that future studies should explicitly consider and discuss the environmental influence of the selected starting material, solvents, and generated byproducts, and that quantitative information on the required amounts of solvents, consumables, and energy should be provided to enable an evaluation of the presented methods in an upscaled sustainability context.

Place, publisher, year, edition, pages
Wiley-VCH Verlagsgesellschaft, 2024
Keywords
biomass, carbon dots, energy consumption, green solvents, optical properties, sustainability, synthesis
National Category
Materials Chemistry Other Physics Topics
Identifiers
urn:nbn:se:umu:diva-228007 (URN)10.1002/advs.202405472 (DOI)001270670100001 ()39023174 (PubMedID)2-s2.0-85198753603 (Scopus ID)
Funder
Stiftelsen Seth M. Kempes Minnes Stipendiefond, SMK-21-0015Stiftelsen Seth M. Kempes Minnes Stipendiefond, SMK-1956Swedish Research Council, 2020-04437Bertil & Britt Svenssons Stiftelse för Belysningsteknik, 2021 höst-14Bertil & Britt Svenssons Stiftelse för Belysningsteknik, 2022 höst-31Knut and Alice Wallenberg Foundation, KAW 2022.0381Knut and Alice Wallenberg Foundation, WISE-AP01-D02EU, European Research Council, 101096650
Note

This article also appears in:

Hot Topic: Biomass Upgrading

Hot Topic: Carbon, Graphite, and Graphene

Available from: 2024-07-22 Created: 2024-07-22 Last updated: 2025-04-24
Wang, T., Li, M., Gu, Z., Qu, C., Segervald, J., Salh, R., . . . Kou, W. (2024). Fluoride releasing in polymerblends of poly(ethylene oxide) and poly(methyl methacrylate). Frontiers in Chemistry, 12, Article ID 1356029.
Open this publication in new window or tab >>Fluoride releasing in polymerblends of poly(ethylene oxide) and poly(methyl methacrylate)
Show others...
2024 (English)In: Frontiers in Chemistry, E-ISSN 2296-2646, Vol. 12, article id 1356029Article in journal (Refereed) Published
Abstract [en]

Introduction: Polymethyl methacrylate is a polymer commonly used in clinicaldentistry, including denture bases, occlusal splints and orthodontic retainers.

Methods: To augment the polymethyl methacrylate-based dental appliances incounteracting dental caries, we designed a polymer blend film composed ofpolymethyl methacrylate and polyethylene oxide by solution casting and addedsodium fluoride.

Results: Polyethylene oxide facilitated the dispersion of sodium fluoride,decreased the surface average roughness, and positively influenced thehydrophilicity of the films. The blend film made of polymethyl methacrylate,polyethylene oxide and NaF with a mass ratio of 10: 1: 0.3 showed sustainedrelease of fluoride ions and acceptable cytotoxicity. Antibacterial activity of all thefilms to Streptococcus mutans was negligible.

Discussion: This study demonstrated that the polymer blends of polyethyleneoxide and polymethyl methacrylate could realize the relatively steady release offluoride ions with high biocompatibility. This strategy has promising potential toendow dental appliances with anti-cariogenicity.

Place, publisher, year, edition, pages
Frontiers Media S.A., 2024
Keywords
dental materials, polymethyl methacrylate, polyethylene oxide, fluoride ion release, polymer blend
National Category
Medical and Health Sciences Dentistry
Identifiers
urn:nbn:se:umu:diva-220718 (URN)10.3389/fchem.2024.1356029 (DOI)001169277100001 ()2-s2.0-85185521631 (Scopus ID)
Funder
Region Västerbotten, RV-937838The Kempe Foundations, JCSMK22-0122The Kempe Foundations, SMK-21-0015Swedish Research Council, 2021-04778Swedish Research Council, 2020-04437
Available from: 2024-02-09 Created: 2024-02-09 Last updated: 2025-04-24Bibliographically approved
Gao, Z., Shao, X., Huang, Z., Xie, Q., Ying, Y., Lin, H., . . . Liu, Y. (2024). Short-chain ligand achieves ultra-stable CsPbX3 perovskite quantum dots for white light-emitting diodes. Applied Physics Letters, 124(4), Article ID 041106.
Open this publication in new window or tab >>Short-chain ligand achieves ultra-stable CsPbX3 perovskite quantum dots for white light-emitting diodes
Show others...
2024 (English)In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 124, no 4, article id 041106Article in journal (Refereed) Published
Abstract [en]

All-inorganic perovskite quantum dots (PeQDs) have aroused great research interest in white light-emitting diodes (WLED) due to their excellent optoelectronic properties, but the poor stability, caused by dynamically binding long-chain capping ligands, hinders their future practical applications. To address this issue, here, we exploit short-chain butyric acid (BA) to replace long-chain oleic acid (OA) as capping ligand of CsPbX3 PeQDs by a hot-injection method. The addition of BA not only makes the morphology of CsPbBr3 PeQDs uniform and improves the crystallinity but also effectively suppresses nonradiative recombination, achieving a near unit photoluminescence quantum yield of 96%. The BA capped CsPbBr3 PeQDs exhibit high stability up to 180 d stored in ambient environment and also significantly improved resistance against polar solvent, ultra-violet lamp irradiation, and heat, which is rationalized by the strong binding capacity and shortened distance of BA to the PeQDs through ab initio calculations. Furthermore, by combining green-emission CsPbBr3 and red-emission CsPbBr0.8I2.2 PeQDs with blue GaN chip, we achieved WLEDs with excellent luminous properties, showing their great potential in practical application of wide-color-gamut display and lighting.

Place, publisher, year, edition, pages
American Institute of Physics (AIP), 2024
National Category
Materials Engineering Materials Chemistry
Research subject
Materials Science
Identifiers
urn:nbn:se:umu:diva-220079 (URN)10.1063/5.0176754 (DOI)001149415000002 ()2-s2.0-85183316634 (Scopus ID)
Funder
Bertil & Britt Svenssons Stiftelse för Belysningsteknik, No. 2019-8553
Available from: 2024-01-27 Created: 2024-01-27 Last updated: 2024-05-27Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0001-8530-8132

Search in DiVA

Show all publications