Umeå University's logo

umu.sePublications
Change search
Link to record
Permanent link

Direct link
Publications (10 of 66) Show all publications
Forssén, C., Silander, I., Zakrisson, J., Amer, E., Szabo, D., Bock, T., . . . Zelan, M. (2024). Demonstration of a transportable Fabry–Pérot refractometer by a ring-type comparison of dead-weight pressure balances at four European national metrology institutes. Sensors, 24(1), Article ID 7.
Open this publication in new window or tab >>Demonstration of a transportable Fabry–Pérot refractometer by a ring-type comparison of dead-weight pressure balances at four European national metrology institutes
Show others...
2024 (English)In: Sensors, E-ISSN 1424-8220, Vol. 24, no 1, article id 7Article in journal (Refereed) Published
Abstract [en]

Fabry–Pérot-based refractometry has demonstrated the ability to assess gas pressure with high accuracy and has been prophesized to be able to realize the SI unit for pressure, the pascal, based on quantum calculations of the molar polarizabilities of gases. So far, the technology has mostly been limited to well-controlled laboratories. However, recently, an easy-to-use transportable refractometer has been constructed. Although its performance has previously been assessed under well-controlled laboratory conditions, to assess its ability to serve as an actually transportable system, a ring-type comparison addressing various well-characterized pressure balances in the 10–90 kPa range at several European national metrology institutes is presented in this work. It was found that the transportable refractometer is capable of being transported and swiftly set up to be operational with retained performance in a variety of environments. The system could also verify that the pressure balances used within the ring-type comparison agree with each other. These results constitute an important step toward broadening the application areas of FP-based refractometry technology and bringing it within reach of various types of stakeholders, not least within industry.

Place, publisher, year, edition, pages
MDPI, 2024
Keywords
Fabry–Pérot refractometer, gas modulation refractometry (GAMOR), pressure standard, ring comparison, transportable
National Category
Other Physics Topics
Identifiers
urn:nbn:se:umu:diva-214119 (URN)10.3390/s24010007 (DOI)001140473600001 ()2-s2.0-85181924589 (Scopus ID)
Funder
European Metrology Programme for Innovation and Research (EMPIR), 18SIB04Swedish Research Council, 621-2020-05105Vinnova, 2018-04570Vinnova, 2019-05029
Note

Originally included in thesis in manuscript form with title "Demonstration of a transportable refractometer by a ring-type comparison of dead-weight pressure balances at four European national metrology institutes".

Available from: 2023-09-05 Created: 2023-09-05 Last updated: 2024-01-23Bibliographically approved
Germann, M., Hjältén, A., Tennyson, J., Yurchenko, S. N., Gordon, I. E., Pett, C., . . . Foltynowicz, A. (2024). Optical frequency comb Fourier transform spectroscopy of formaldehyde in the 1250 to 1390 cm−1 range: experimental line list and improved MARVEL analysis. Journal of Quantitative Spectroscopy and Radiative Transfer, 312, Article ID 108782.
Open this publication in new window or tab >>Optical frequency comb Fourier transform spectroscopy of formaldehyde in the 1250 to 1390 cm−1 range: experimental line list and improved MARVEL analysis
Show others...
2024 (English)In: Journal of Quantitative Spectroscopy and Radiative Transfer, ISSN 0022-4073, E-ISSN 1879-1352, Vol. 312, article id 108782Article in journal (Refereed) Published
Abstract [en]

We use optical frequency comb Fourier transform spectroscopy to record high-resolution, low-pressure, room-temperature spectra of formaldehyde (H212C16O) in the range of 1250 to 1390 cm−1. Through line-by-line fitting, we retrieve line positions and intensities of 747 rovibrational transitions: 558 from the ν6 band, 129 from the ν4 band, and 14 from the ν3 band, as well as 46 from four different hot bands. We incorporate the accurate and precise line positions (0.4 MHz median uncertainty) into the MARVEL (measured active vibration-rotation energy levels) analysis of the H2CO spectrum. This increases the number of MARVEL-predicted energy levels by 82 and of rovibrational transitions by 5382, and substantially reduces uncertainties of MARVEL-derived H2CO energy levels over a large range: from pure rotational levels below 200 cm−1 up to multiply excited vibrational levels at 6000 cm−1. This work is an important step toward filling the gaps in formaldehyde data in the HITRAN database.

Place, publisher, year, edition, pages
Elsevier, 2024
Keywords
Empirical line list, Formaldehyde, Fourier transform spectroscopy, Frequency comb spectroscopy, High-resolution spectroscopy, MARVEL
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:umu:diva-215854 (URN)10.1016/j.jqsrt.2023.108782 (DOI)2-s2.0-85174165539 (Scopus ID)
Funder
Knut and Alice Wallenberg Foundation, KAW 2015.0159Knut and Alice Wallenberg Foundation, KAW 2020.0303Swedish Research Council, 2016-03593Swedish Research Council, 2020-00238EU, Horizon 2020, 883830
Available from: 2023-11-02 Created: 2023-11-02 Last updated: 2023-11-10Bibliographically approved
Zakrisson, J., Silander, I., Silva de Oliveira, V., Hjältén, A., Rosina, A., Rubin, T., . . . Axner, O. (2024). Procedure for automated low uncertainty assessment of empty cavity mode frequencies in Fabry-Pérot cavity based refractometry. Optics Express, 32(3), 3959-3973
Open this publication in new window or tab >>Procedure for automated low uncertainty assessment of empty cavity mode frequencies in Fabry-Pérot cavity based refractometry
Show others...
2024 (English)In: Optics Express, E-ISSN 1094-4087, Vol. 32, no 3, p. 3959-3973Article in journal (Refereed) Published
Abstract [en]

A procedure for automated low uncertainty assessment of empty cavity mode frequencies in Fabry-Pérot cavity based refractometry that does not require access to laser frequency measuring instrumentation is presented. It requires a previously well-characterized system regarding mirror phase shifts, Gouy phase, and mode number, and is based on the fact that the assessed refractivity should not change when mode jumps take place. It is demonstrated that the procedure is capable of assessing mode frequencies with an uncertainty of 30 MHz, which, when assessing pressure of nitrogen, corresponds to an uncertainty of 0.3 mPa.

National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:umu:diva-220868 (URN)10.1364/OE.513708 (DOI)38297605 (PubMedID)2-s2.0-85183822866 (Scopus ID)
Funder
Swedish Research Council, 2020-00238Swedish Research Council, 2020-05105Knut and Alice Wallenberg Foundation, 2020.0303Umeå University, IDS-18Vinnova, 2018-04570
Available from: 2024-02-19 Created: 2024-02-19 Last updated: 2024-02-19Bibliographically approved
Silva de Oliveira, V., Silander, I., Rutkowski, L., Soboń, G., Axner, O., Lehmann, K. K. & Foltynowicz, A. (2024). Sub-Doppler optical-optical double-resonance spectroscopy using a cavity-enhanced frequency comb probe. Nature Communications, 15(1), Article ID 161.
Open this publication in new window or tab >>Sub-Doppler optical-optical double-resonance spectroscopy using a cavity-enhanced frequency comb probe
Show others...
2024 (English)In: Nature Communications, E-ISSN 2041-1723, Vol. 15, no 1, article id 161Article in journal (Refereed) Published
Abstract [en]

Accurate parameters of molecular hot-band transitions, i.e., those starting from vibrationally excited levels, are needed to accurately model high-temperature spectra in astrophysics and combustion, yet laboratory spectra measured at high temperatures are often unresolved and difficult to assign. Optical-optical double-resonance (OODR) spectroscopy allows the measurement and assignment of individual hot-band transitions from selectively pumped energy levels without the need to heat the sample. However, previous demonstrations lacked either sufficient resolution, spectral coverage, absorption sensitivity, or frequency accuracy. Here we demonstrate OODR spectroscopy using a cavity-enhanced frequency comb probe that combines all these advantages. We detect and assign sub-Doppler transitions in the spectral range of the 3ν3 ← ν3 resonance of methane with frequency precision and sensitivity more than an order of magnitude better than before. This technique will provide high-accuracy data about excited states of a wide range of molecules that is urgently needed for theoretical modeling of high-temperature data and cannot be obtained using other methods.

Place, publisher, year, edition, pages
Springer Nature, 2024
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:umu:diva-219329 (URN)10.1038/s41467-023-44417-2 (DOI)38167498 (PubMedID)2-s2.0-85181230228 (Scopus ID)
Funder
Knut and Alice Wallenberg Foundation, KAW 2015.0159Knut and Alice Wallenberg Foundation, KAW 2020.0303Swedish Research Council, 2020-00238The Kempe Foundations, JCK 1317.1
Available from: 2024-01-12 Created: 2024-01-12 Last updated: 2024-01-12Bibliographically approved
Hjältén, A., Silva de Oliveira, V., Silander, I., Rosina, A., Rutkowski, L., Sobon, G., . . . Foltynowicz, A. (2023). Accurate measurement and assignment of high rotational energy levels of the 3v3 ← v3 band of methane. In: 2023 conference on lasers and electro-optics, CLEO 2023: . Paper presented at 2023 Conference on Lasers and Electro-Optics, CLEO 2023, San Jose, May 7-12, 2023. IEEE, Article ID STh4L.4.
Open this publication in new window or tab >>Accurate measurement and assignment of high rotational energy levels of the 3v3 ← v3 band of methane
Show others...
2023 (English)In: 2023 conference on lasers and electro-optics, CLEO 2023, IEEE, 2023, article id STh4L.4Conference paper, Published paper (Refereed)
Abstract [en]

We use optical-optical double-resonance spectroscopy with a high-power continuous wave pump and a cavity-enhanced comb probe to expand sub-Doppler measurements of the 3v3 ← v3 band of CH4 to higher rotational levels. We assign the final states using combination differences, i.e., by reaching the same state using different pump/probe combinations.

Place, publisher, year, edition, pages
IEEE, 2023
Series
Quantum Electronics and Laser Science, ISSN 2160-8989
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:umu:diva-217340 (URN)2-s2.0-85176362960 (Scopus ID)9781957171258 (ISBN)9781665455688 (ISBN)
Conference
2023 Conference on Lasers and Electro-Optics, CLEO 2023, San Jose, May 7-12, 2023
Available from: 2023-12-04 Created: 2023-12-04 Last updated: 2023-12-04Bibliographically approved
Germann, M., Hjältén, A., Boudon, V., Richard, C., Tennyson, J., Yurchenko, S., . . . Foltynowicz, A. (2023). High accuracy line lists of CH4 and H2CO in the 8 µm range from optical frequency comb fourier transform spectroscopy. In: 2023 conference on lasers and electro-optics Europe & European quantum electronics conference (CLEO/Europe-EQEC): . Paper presented at 2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2023, Munich, June 26-30, 2023. IEEE, Article ID 10232703.
Open this publication in new window or tab >>High accuracy line lists of CH4 and H2CO in the 8 µm range from optical frequency comb fourier transform spectroscopy
Show others...
2023 (English)In: 2023 conference on lasers and electro-optics Europe & European quantum electronics conference (CLEO/Europe-EQEC), IEEE, 2023, article id 10232703Conference paper, Published paper (Refereed)
Place, publisher, year, edition, pages
IEEE, 2023
Series
Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference, ISSN 2639-5452, E-ISSN 2833-1052
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:umu:diva-216799 (URN)10.1109/CLEO/EUROPE-EQEC57999.2023.10232703 (DOI)2-s2.0-85175718241 (Scopus ID)9798350345995 (ISBN)9798350346008 (ISBN)
Conference
2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2023, Munich, June 26-30, 2023
Funder
Knut and Alice Wallenberg Foundation, 2015.0159Knut and Alice Wallenberg Foundation, 2020.0303Swedish Research Council, 2016-03593EU, European Research Council, 883830
Available from: 2023-11-21 Created: 2023-11-21 Last updated: 2023-11-21Bibliographically approved
Germann, M., Hjältén, A., Gordon, I. E., Tennyson, J., Yurchenko, S., Krzempek, K., . . . Foltynowicz, A. (2023). Precision frequency comb spectroscopy in the 8 µm range. In: CLEO 2023: Proceedings. Paper presented at 2023 Conference on Lasers and Electro-Optics, CLEO 2023, San Jose, USA, May 7-12, 2023. Optical Society of America, Article ID AW4E.1.
Open this publication in new window or tab >>Precision frequency comb spectroscopy in the 8 µm range
Show others...
2023 (English)In: CLEO 2023: Proceedings, Optical Society of America, 2023, article id AW4E.1Conference paper, Published paper (Refereed)
Abstract [en]

We use Fourier transform spectroscopy based on a compact difference frequency generation comb source emitting around 8 μm to record broadband high-resolution spectra of molecules relevant to astrophysics and environmental monitoring. From the spectra we obtain line lists with sub-MHz accuracy, an order of magnitude better than previously available, and use them to refine theoretical models of these molecules. Here we report results for formaldehyde, for which the 8 μm range is missing in HITRAN.

Place, publisher, year, edition, pages
Optical Society of America, 2023
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:umu:diva-216879 (URN)10.1364/CLEO_AT.2023.AW4E.1 (DOI)2-s2.0-85176375313 (Scopus ID)9781957171258 (ISBN)
Conference
2023 Conference on Lasers and Electro-Optics, CLEO 2023, San Jose, USA, May 7-12, 2023
Available from: 2023-12-12 Created: 2023-12-12 Last updated: 2023-12-12Bibliographically approved
Forssén, C., Silander, I., Zakrisson, J., Zelan, M. & Axner, O. (2022). An optical pascal in Sweden. Journal of Optics, 24(3), Article ID 033002.
Open this publication in new window or tab >>An optical pascal in Sweden
Show others...
2022 (English)In: Journal of Optics, ISSN 2040-8978, E-ISSN 2040-8986, Vol. 24, no 3, article id 033002Article, review/survey (Refereed) Published
Abstract [en]

By measuring the refractivity and the temperature of a gas, its pressure can be assessed from fundamental principles. The highest performing instruments are based on Fabry-Perot cavities where a laser is used to probe the frequency of a cavity mode, which is shifted in relation to the refractivity of the gas in the cavity. Recent activities have indicated that such systems can demonstrate an extended uncertainty in the 10 ppm (parts-per-million or 10-6) range. As a means to reduce the influence of various types of disturbances (primarily drifts and fluctuations) a methodology based on modulation, denoted gas modulation refractometry (GAMOR), has recently been developed. Systems based on this methodology are in general high-performance, e.g. they have demonstrated precision in the sub-ppm range, and they are sturdy. They can also be made autonomous, allowing for automated and unattended operation for virtually infinite periods of time. To a large degree, the development of such instruments depends on the access to modern photonic components, e.g. narrow line-width lasers, electro-and acousto-optic components, and various types of fiber components. This work highlights the role of such modern devices in GAMOR-based instrumentation and provides a review on the recent development of such instruments in Sweden that has been carried out in a close collaboration between a research institute and the Academy. It is shown that the use of state-of-the-art photonic devices allows sturdy, automated and miniaturized instrumentation that, for the benefit of industry, can serve as standards for pressure and provide fast, unattended, and calibration-free pressure assessments at a fraction of the present cost.

Place, publisher, year, edition, pages
Institute of Physics (IOP), 2022
Keywords
Fabry-Perot, optical, pascal, pressure, refractometry, Sweden
National Category
Atom and Molecular Physics and Optics Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:umu:diva-193176 (URN)10.1088/2040-8986/ac4ea2 (DOI)000757597100001 ()2-s2.0-85125850587 (Scopus ID)
Funder
Vinnova, 2017-05013Vinnova, 2018-04570Vinnova, 2019-05029Swedish Research Council, 621-2020-05105Swedish Research Council, 621-2015-04374The Kempe Foundations, 1823.U12EU, Horizon 2020
Available from: 2022-03-17 Created: 2022-03-17 Last updated: 2023-09-06Bibliographically approved
Forssén, C., Silander, I., Zakrisson, J., Amer, E., Szabo, D., Bock, T., . . . Zelan, M. (2022). Circular comparison of conventional pressure standards using a transportable optical refractometer: preparation and transportation. In: 6th TC16 Conference on Pressure and Vacuum Measurement 2022, Together with the 24th TC3 Conference on the Measurement of Force, Mass and Torque, the 14th TC5 Conference on the Measurement of Hardness, and the 5th TC22 Conference on Vibration Measurement: . Paper presented at 6th TC16 Conference on Pressure and Vacuum Measurement 2022, Together with the 24th TC3 Conference on the Measurement of Force, Mass and Torque, the 14th TC5 Conference on the Measurement of Hardness, and the 5th TC22 Conference on Vibration Measurement, Cavtat-Dubrovnik, October 11-13, 2022. International Measurement Confederation (IMEKO)
Open this publication in new window or tab >>Circular comparison of conventional pressure standards using a transportable optical refractometer: preparation and transportation
Show others...
2022 (English)In: 6th TC16 Conference on Pressure and Vacuum Measurement 2022, Together with the 24th TC3 Conference on the Measurement of Force, Mass and Torque, the 14th TC5 Conference on the Measurement of Hardness, and the 5th TC22 Conference on Vibration Measurement, International Measurement Confederation (IMEKO) , 2022Conference paper, Published paper (Refereed)
Abstract [en]

Using a transportable Fabry-Pérot cavity refractometer, a circular comparison of existing primary standards at several national metrology institutes is currently underway. This paper provides information about the refractometer, the preparation for the comparison, and the transportation procedure.

Place, publisher, year, edition, pages
International Measurement Confederation (IMEKO), 2022
Keywords
circular comparison, Fabry-Pérot cavity, GAMOR, pressure, pressure balance, transportable refractometer
National Category
Other Physics Topics Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:umu:diva-206745 (URN)10.21014/tc16-2022.137 (DOI)2-s2.0-85152084412 (Scopus ID)9781713870227 (ISBN)
Conference
6th TC16 Conference on Pressure and Vacuum Measurement 2022, Together with the 24th TC3 Conference on the Measurement of Force, Mass and Torque, the 14th TC5 Conference on the Measurement of Hardness, and the 5th TC22 Conference on Vibration Measurement, Cavtat-Dubrovnik, October 11-13, 2022
Funder
EU, Horizon 2020Swedish Research Council, 621-2020-05105Vinnova, 2018-04570Vinnova, 2019-05029The Kempe Foundations, 1823.U12
Available from: 2023-05-03 Created: 2023-05-03 Last updated: 2023-09-07Bibliographically approved
Silander, I., Zakrisson, J., Silva de Oliveira, V., Forssén, C., Foltynowicz, A., Rubin, T., . . . Axner, O. (2022). In situ determination of the penetration depth of mirrors in Fabry-Perot refractometers and its influence on assessment of refractivity and pressure. Optics Express, 30(14), 25891-25906
Open this publication in new window or tab >>In situ determination of the penetration depth of mirrors in Fabry-Perot refractometers and its influence on assessment of refractivity and pressure
Show others...
2022 (English)In: Optics Express, E-ISSN 1094-4087, Vol. 30, no 14, p. 25891-25906Article in journal (Refereed) Published
Abstract [en]

A procedure is presented for in situ determination of the frequency penetration depth of coated mirrors in Fabry-Perot (FP) based refractometers and its influence on the assessment of refractivity and pressure. It is based on assessments of the absolute frequency of the laser and the free spectral range of the cavity. The procedure is demonstrated on an Invar-based FP cavity system with high-reflection mirrors working at 1.55 µm. The influence was assessed with such a low uncertainty that it does not significantly contribute to the uncertainties (k = 2) in the assessment of refractivity (<8 × 10−13) or pressure of nitrogen (<0.3 mPa).

Place, publisher, year, edition, pages
Optica Publishing Group, 2022
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:umu:diva-198493 (URN)10.1364/OE.463285 (DOI)000821326000132 ()2-s2.0-85135073412 (Scopus ID)
Funder
European Metrology Programme for Innovation and Research (EMPIR), 18SIB04Swedish Research Council, 2020-00238Swedish Research Council, 2020-05105Knut and Alice Wallenberg Foundation, 2020.0303Vinnova, 2018-04570The Kempe Foundations, 1823.U12
Available from: 2022-08-10 Created: 2022-08-10 Last updated: 2023-09-06Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0001-5790-2185

Search in DiVA

Show all publications