Change search
Link to record
Permanent link

Direct link
Hansen, Sabine
Publications (2 of 2) Show all publications
Kulén, M., Lindgren, M., Hansen, S., Cairns, A. G., Grundström, C., Begum, A., . . . Almqvist, F. (2018). Structure-based design of inhibitors targeting PrfA, the master virulence regulator of Listeria monocytogenes. Journal of Medicinal Chemistry, 61(9), 4165-4175
Open this publication in new window or tab >>Structure-based design of inhibitors targeting PrfA, the master virulence regulator of Listeria monocytogenes
Show others...
2018 (English)In: Journal of Medicinal Chemistry, ISSN 0022-2623, E-ISSN 1520-4804, Vol. 61, no 9, p. 4165-4175Article in journal (Refereed) Published
Abstract [en]

Listeria monocytogenes is a bacterial pathogen that controls much of its virulence through the transcriptional regulator PrfA. In this study, we describe structure guided design and synthesis of a set of PrfA inhibitors based on ring-fused 2-pyridone heterocycles. Our most effective compound decreased virulence factor expression, reduced bacterial uptake into eukaryotic cells, and improved survival of chicken embryos infected with L. monocytogenes compared to previously identified compounds. Crystal structures identified an intraprotein "tunnel" as the main inhibitor binding site (A1), where the compounds participate in an extensive hydrophobic network that restricts the protein's ability to form functional DNA-binding helix−turn−helix (HTH) motifs. Our studies also revealed a hitherto unsuspected structural plasticity of the HTH motif. In conclusion, we have designed 2-pyridone analogues that function as site-A1 selective PrfA inhibitors with potent antivirulence properties.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2018
National Category
Medicinal Chemistry
urn:nbn:se:umu:diva-148830 (URN)10.1021/acs.jmedchem.8b00289 (DOI)000432204800027 ()29667825 (PubMedID)2-s2.0-85046422455 (Scopus ID)
Available from: 2018-06-13 Created: 2018-06-13 Last updated: 2018-08-28Bibliographically approved
Good, J. A. D., Andersson, C., Hansen, S., Wall, J., Krishnan, S., Begum, A., . . . Johansson, J. (2016). Attenuating Listeria monocytogenes virulence by targeting the regulatory protein PrfA. Cell chemical biology, 23(3), 404-414
Open this publication in new window or tab >>Attenuating Listeria monocytogenes virulence by targeting the regulatory protein PrfA
Show others...
2016 (English)In: Cell chemical biology, ISSN 2451-9448, Vol. 23, no 3, p. 404-414Article in journal (Refereed) Published
Abstract [en]

The transcriptional activator PrfA, a member of the Crp/Fnr family, controls the expression of some key virulence factors necessary for infection by the human bacterial pathogen Listeria monocytogenes. Phenotypic screening identified ring-fused 2-pyridone molecules that at low micromolar concentrations attenuate L. monocytogenes infectivity by reducing the expression of virulence genes, without compromising bacterial growth. These inhibitors bind the transcriptional regulator PrfA and decrease its affinity for the consensus DNA binding site. Structural characterization of this interaction revealed that one of the ring-fused 2-pyridones, compound 1, binds within a hydrophobic pocket, located between the C- and N-terminal domains of PrfA, and interacts with residues important for PrfA activation. This indicates that these inhibitors maintain the DNA-binding helix-turn-helix motif of PrfA in a disordered state, thereby preventing a PrfA:DNA interaction. Ring-fused 2-pyridones represent a new class of chemical probes for studying virulence in L. monocytogenes.

National Category
Biochemistry and Molecular Biology
Research subject
Molecular Biology
urn:nbn:se:umu:diva-114083 (URN)10.1016/j.chembiol.2016.02.013 (DOI)000381508300013 ()26991105 (PubMedID)

Originally published in manuscipt form in thesis.

Available from: 2016-01-12 Created: 2016-01-12 Last updated: 2018-06-07Bibliographically approved

Search in DiVA

Show all publications