umu.sePublications
Change search
Link to record
Permanent link

Direct link
BETA
Malla, Sandhya
Publications (2 of 2) Show all publications
Nyrén, R., Makoveichuk, E., Malla, S., Kersten, S., Nilsson, S. K., Ericsson, M. & Olivecrona, G. (2019). Lipoprotein lipase in mouse kidney: effects of nutritional status and high-fat diet. American Journal of Physiology - Renal Physiology, 316(3), F558-F571
Open this publication in new window or tab >>Lipoprotein lipase in mouse kidney: effects of nutritional status and high-fat diet
Show others...
2019 (English)In: American Journal of Physiology - Renal Physiology, ISSN 1931-857X, E-ISSN 1522-1466, Vol. 316, no 3, p. F558-F571Article in journal (Refereed) Published
Abstract [en]

Activity of lipoprotein lipase (LPL) is high in mouse kidney, but the reason is poorly understood. The aim was to characterize localization, regulation, and function of LPL in kidney of C57BL/6J mice. We found LPL mainly in proximal tubules, localized inside the tubular epithelial cells, under all conditions studied. In fed mice, some LPL, colocalized with the endothelial markers CD31 and GPIHBP1 and could be removed by perfusion with heparin. indicating a vascular location. The role of angiopoietin-like protein 4 (ANGPTL4) for nutritional modulation of LPL activity was studied in wild-type and Angptl4(-/-) mice. In Angptl4(-/-) mice, kidney LPL activity remained high in fasted animals, indicating that ANGPTL4 is involved in suppression of LPL activity on fasting, like in adipose tissue. The amount of ANGPTL4 protein in kidney was low, and the protein appeared smaller in size, compared with ANGPTL4 in heart and adipose tissue. To study the influence of obesity, mice were challenged with high-fat diet for 22 wk, and LPL was studied after an overnight fast compared with fasted mice given food for 3 h. High-fat diet caused blunting of the normal adaptation of LPL activity to feeding/fasting in adipose tissue, but in kidneys this adaptation was lost only in male mice. LPL activity increases to high levels in mouse kidney after feeding, but as no difference in uptake of chylomicron triglycerides in kidneys is found between fasted and fed states, our data confinn that LPL appears to have a minor role for lipid uptake in this organ.

Place, publisher, year, edition, pages
American Physiological Society, 2019
Keywords
angiopoietin-like protein 4, high-fat diet, lipoprotein lipase, mouse, triglyceride uptake
National Category
Physiology
Identifiers
urn:nbn:se:umu:diva-158108 (URN)10.1152/ajprenal.00474.2018 (DOI)000462008700015 ()30698048 (PubMedID)
Funder
Swedish Research Council, 2015-02942Swedish Heart Lung Foundation, 2016-245-32M
Available from: 2019-04-12 Created: 2019-04-12 Last updated: 2019-04-12Bibliographically approved
Malla, S., Melguizo-Sanchis, D. & Aguilo, F. (2019). Steering pluripotency and differentiation with N6-methyladenosine RNA modification. Biochimica et Biophysica Acta. Gene Regulatory Mechanisms, 1862(3), 394-402
Open this publication in new window or tab >>Steering pluripotency and differentiation with N6-methyladenosine RNA modification
2019 (English)In: Biochimica et Biophysica Acta. Gene Regulatory Mechanisms, ISSN 1874-9399, E-ISSN 1876-4320, Vol. 1862, no 3, p. 394-402Article in journal (Refereed) Published
Abstract [en]

Chemical modifications of RNA provide a direct and rapid way to modulate the existing transcriptome, allowing the cells to adapt rapidly to the changing environment. Among these modifications, N6-methyladenosine (m6A) has recently emerged as a widely prevalent mark of messenger RNA in eukaryotes, linking external stimuli to an intricate network of transcriptional, post-transcriptional and translational processes. m6A modification modulates a broad spectrum of biochemical processes, including mRNA decay, translation and splicing. Both m6A modification and the enzymes that control m6A metabolism are essential for normal development. In this review, we summarized the most recent findings on the role of m6A modification in maintenance of the pluripotency of embryonic stem cells (ESCs), cell fate specification, the reprogramming of somatic cells into induced pluripotent stem cells (iPSCs), and differentiation of stem and progenitor cells.

Place, publisher, year, edition, pages
Elsevier, 2019
Keywords
Adipogenesis, Cellular differentiation, Embryonic stem cell, Epitranscriptomics, Hematopoietic stem cell, Induced pluripotent stem cell, METTL3, Myogenesis, N(6)-methyladenosine, Neurogenesis, RNA methylation, Spermatogenesis
National Category
Cell and Molecular Biology
Identifiers
urn:nbn:se:umu:diva-153977 (URN)10.1016/j.bbagrm.2018.10.013 (DOI)000462104500017 ()30412796 (PubMedID)
Funder
Knut and Alice Wallenberg FoundationVästerbotten County CouncilThe Kempe Foundations, JCK-1723.1Swedish Research Council, 2017-01636
Note

This article is part of a Special Issue entitled: mRNA modifications in gene expression control edited by Dr. Soller Matthias and Dr. Fray Rupert

Available from: 2018-12-10 Created: 2018-12-10 Last updated: 2019-04-12Bibliographically approved
Organisations

Search in DiVA

Show all publications