Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Surface and Bulk Thermal Dehydroxylation of FeOOH Polymorphs
Umeå University, Faculty of Science and Technology, Department of Chemistry.
2016 (English)In: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 120, no 31, p. 6249-6257Article in journal (Refereed) Published
Abstract [en]

In this study, bulk and surface thermal decomposition of synthetic iron oxyhydroxides to iron oxides was followed using the temperature programmed desorption (TPD) technique. Submicron-sized akaganeite beta-FeOOH), rod- and lath-shaped lepidocrocite (gamma-FeOOH), and goethite (alpha-FeOOH) particles were heated in vacuo in the 30-400 degrees C range, and their OH vibrational modes were monitored by Fourier transform infrared (FTIR) spectroscopy while H2O(g) release was monitored by quadrupole mass spectrometry. Peak thermal dehydroxylation temperatures were larger in the order of lath lepidocrocite (200 degrees C) < akaganeite (200/260 degrees C) < rod lepidocrocite (268 degrees C) < goethite (293 degrees C). Pre-equilibration of these particles to aqueous solutions of HCl increased dehydroxylation temperatures of all minerals except goethite by 13-40 degrees C. These shifts were explained by (1) the dissolution of particles or regions of particles of lower degree of crystallinity by HCl, as well as (2) the strengthening of the hydrogen bond environment in the akaganeite bulk. The latter is a means of facilitating H2O(g) formation via interactions between two adjacent OH groups. Strongly analogous forms of interactions at the FeOOH particle surfaces were also shown to facilitate the release of singly coordinated (-OH) hydroxo groups to the gas phase at temperatures lower than 125 degrees C, thus creating OH vacancies that may be actively involved in the transfer of bulk to surface OH groups during thermal dehydroxylation. Doubly- (mu-OH) and triply- (mu(3)-OH) coordinated hydroxo groups were however resilient to exchange under those conditions, and their dehydroxylation was strongly congruent with that of bulk OH groups. By resolving the bulk and surface thermal decomposition of FeOOH polymorphs, this work provides clearer insight into the fate of these materials in natural and technological settings where important thermal gradients are commonplace.

Place, publisher, year, edition, pages
2016. Vol. 120, no 31, p. 6249-6257
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:umu:diva-126369DOI: 10.1021/acs.jpca.6b04294ISI: 000381452200015PubMedID: 27426101Scopus ID: 2-s2.0-84982161437OAI: oai:DiVA.org:umu-126369DiVA, id: diva2:1034465
Available from: 2016-10-12 Created: 2016-10-03 Last updated: 2023-03-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Boily, Jean-Francois

Search in DiVA

By author/editor
Boily, Jean-Francois
By organisation
Department of Chemistry
In the same journal
Journal of Physical Chemistry A
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 335 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf