umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Low Molecular Mass Photosystem II Protein PsbTn is Important for Light Acclimation
Umeå University, Faculty of Science and Technology, Department of Chemistry. College of Life Sciences, Sichuan Agricultural University, Ya’an, China; .
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Show others and affiliations
2019 (English)In: Plant Physiology, ISSN 0032-0889, E-ISSN 1532-2548, Vol. 179, no 4, p. 1739-1753Article in journal (Refereed) Published
Abstract [en]

Photosystem II (PSII) is a supramolecular complex containing over 30 protein subunits and a large set of cofactors including various pigments and quinones as well as Mn, Ca, Cl, and Fe ions. Eukaryotic PSII complexes contain many subunits not found in their bacterial counterparts, including the proteins PsbP, PsbQ, PsbS, and PsbW, as well as the highly homologous, low molecular mass subunits PsbTn1 and PsbTn2 whose function is currently unknown. To determine the function of PsbTn1 and PsbTn2, we generated single and double psbTn1 and psbTn2 knock-out mutants in Arabidopsis thaliana. Cross-linking and reciprocal co-immunoprecipitation experiments revealed that PsbTn is a lumenal PSII protein situated next to the cytochrome b559 subunit PsbE. The removal of the PsbTn proteins decreased the oxygen evolution rate and PSII core phosphorylation level but increased the susceptibility of PSII to photoinhibition and the production of reactive oxygen species. The assembly and stability of PSII were unaffected, indicating that the deficiencies of the psbTn1 psbTn2 double mutants are due to structural changes. Double mutants exhibited a higher rate of non-photochemical quenching of excited states than the wild type and single mutants, as well as slower state transition kinetics and a lower quantum yield of PSII when grown in the field. Based on these results, we propose that the main function of the PsbTn proteins is to enable PSII to acclimate to light shifts or intense illumination.

Place, publisher, year, edition, pages
Rockville: American Society of Plant Biologists , 2019. Vol. 179, no 4, p. 1739-1753
National Category
Biochemistry and Molecular Biology
Identifiers
URN: urn:nbn:se:umu:diva-156389DOI: 10.1104/pp.18.01251ISI: 000462993100045PubMedID: 30538167OAI: oai:DiVA.org:umu-156389DiVA, id: diva2:1288646
Funder
Carl Tryggers foundation
Note

Short title: PsbTn protein regulates light adaptation

Available from: 2019-02-14 Created: 2019-02-14 Last updated: 2019-05-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Chen, Yang-ErLezhneva, LinaSchröder, Wolfgang P.

Search in DiVA

By author/editor
Chen, Yang-ErLezhneva, LinaSchröder, Wolfgang P.
By organisation
Department of Chemistry
In the same journal
Plant Physiology
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 42 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf