Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Food quality, nutrient limitation of secondary production, and the strength of trophic cascades
Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
2007 (English)In: Oikos, Vol. 116, no 7, p. 1128-1143Article in journal (Refereed) Published
Abstract [en]

Recent meta-analyses confirm that the strength of trophic cascades (indirect positive effects of predators on plant biomass through control of herbivores) varies among ecosystem types. In particular, most terrestrial systems show smaller cascades than most aquatic ones. Ecologists still remain challenged to explain this variation. Here, we examine a food quality hypothesis which states that higher quality plants should promote stronger trophic cascades. Food quality involves two components: digestion resistance of plants and magnitude of stoichiometric imbalance between plants and herbivores (where stoichiometry involves ratios of nutrient: carbon ratio of tissues). Both factors vary among ecosystems and could mediate conversion efficiency of plants into new herbivores (and hence control of plants by herbivores). We explored the food quality hypothesis using two models, one assuming that plant stoichiometry is a fixed trait, the other one allowing this trait to vary dynamically (but with a minimal nutrient: carbon ratio of structural mass). Both models produce the same suite of results. First, as expected, systems with more easily digested plants promote stronger cascades. Second, contrary to expectations, higher (fixed or minimal) nutrient: carbon ratio of plants do not promote stronger cascades, largely because of the net result of ecosystem feedbacks. Still, the model with dynamic stoichiometry permits positive correlations of realized plant nutrient: carbon ratio and cascade strength (as predicted), mediated through digestion resistance. Third, lower nutrient: carbon ratio of herbivores promotes stronger cascades. However, this result likely cannot explain variation in cascade strength because nutrient: carbon stoichiometry of herbivores does not vary greatly between terrestrial and aquatic ecosystems. Finally, we found that predation promotes nutrient limitation of herbivores. This finding highlights that food web processes, such as predation, can influence stoichiometry-mediated interactions of plants and herbivores.

Place, publisher, year, edition, pages
2007. Vol. 116, no 7, p. 1128-1143
National Category
Ecology
Identifiers
URN: urn:nbn:se:umu:diva-31471ISI: 000247438000005ISBN: 0030-1299 (print)OAI: oai:DiVA.org:umu-31471DiVA, id: diva2:293179
Note
Hall, Spencer R. Shurin, Jonathan B. Diehl, Sebastian Nisbet, Roger M.Available from: 2010-02-10 Created: 2010-02-10 Last updated: 2018-06-08

Open Access in DiVA

No full text in DiVA

Authority records

Diehl, S.

Search in DiVA

By author/editor
Diehl, S.
By organisation
Ecology and Environmental Science
Ecology

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 314 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf