Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
N-acetylcysteine alters apoptotic gene expression in axotomised primary sensory afferent subpopulations.
Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
Show others and affiliations
2009 (English)In: Neuroscience research, ISSN 0168-0102, E-ISSN 1872-8111, Vol. 65, no 2, p. 148-155Article in journal (Refereed) Published
Abstract [en]

Novel approaches are required in peripheral nerve injury management because current surgical techniques, which do not address axotomy-induced neuronal death, lead to deficient sensory recovery. Sensory neuronal death has functional preference with cutaneous neurons dying in great numbers whilst muscle afferents survive axotomy. This offers the potential of comparing similar cell types that suffer distinct fates upon nerve injury. Here, a novel approach, combining in vivo rat nerve injury model with laser microdissection and quantitative real-time polymerase chain reaction, identifies crucial disparities in apoptotic gene expression attributable to subpopulations of differing sensory modalities and examines the response to N-acetylcysteine (NAC) therapy. We show that axotomised muscle afferent neurons survive injury due to a neuroprotective response which markedly downregulates Bax and caspase-3 mRNA. In contrast, axotomised cutaneous sensory neurons significantly upregulate caspase-3 and alter both Bcl-2 and Bax expression such that pro-apoptotic Bax predominates. N-Acetylcysteine (NAC) intervention promotes neuroprotection of cutaneous sensory neurons through considerable upregulation of Bcl-2 and downregulation of both Bax and caspase-3 mRNA. The data presented identifies differential activation of apoptotic genes in axotomised neuronal subpopulations. Furthermore, NAC therapy instigates apoptotic gene expression changes in axotomised neurons, thereby offering pharmacotherapeutic potential in the clinical treatment of nerve injury.

Place, publisher, year, edition, pages
2009. Vol. 65, no 2, p. 148-155
Keywords [en]
Peripheral nerve injury, Dorsal root ganglion, Neuronal apoptosis, Neuroprotection, Rat
National Category
Surgery
Identifiers
URN: urn:nbn:se:umu:diva-32017DOI: 10.1016/j.neures.2009.06.008PubMedID: 19559059Scopus ID: 2-s2.0-68949155373OAI: oai:DiVA.org:umu-32017DiVA, id: diva2:301283
Available from: 2010-03-03 Created: 2010-02-26 Last updated: 2023-03-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Wiberg, Mikael

Search in DiVA

By author/editor
Wiberg, Mikael
By organisation
AnatomyHand Surgery
In the same journal
Neuroscience research
Surgery

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 117 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf