umu.sePublications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt152",{id:"formSmash:upper:j_idt152",widgetVar:"widget_formSmash_upper_j_idt152",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt158_j_idt166",{id:"formSmash:upper:j_idt158:j_idt166",widgetVar:"widget_formSmash_upper_j_idt158_j_idt166",target:"formSmash:upper:j_idt158:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Spline approximation of a random process with singularityPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2011 (English)In: Journal of Statistical Planning and Inference, ISSN 0378-3758, E-ISSN 1873-1171, Vol. 141, no 3, p. 1333-1342Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Elsevier , 2011. Vol. 141, no 3, p. 1333-1342
##### Keywords [en]

Approximation, Random process, Sampling design, Hermite splines
##### Identifiers

URN: urn:nbn:se:umu:diva-41544DOI: 10.1016/j.jspi.2010.10.006OAI: oai:DiVA.org:umu-41544DiVA, id: diva2:406794
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt531",{id:"formSmash:j_idt531",widgetVar:"widget_formSmash_j_idt531",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt537",{id:"formSmash:j_idt537",widgetVar:"widget_formSmash_j_idt537",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt543",{id:"formSmash:j_idt543",widgetVar:"widget_formSmash_j_idt543",multiple:true}); Available from: 2011-03-28 Created: 2011-03-28 Last updated: 2018-06-08Bibliographically approved
##### In thesis

Let a continuous random process X defined on [0,1] be (m+β)-smooth, 0m, 0<β1, in quadratic mean for all t>0 and have an isolated singularity point at t=0. In addition, let X be locally like a m-fold integrated β-fractional Brownian motion for all nonsingular points. We consider approximation of X by piecewise Hermite interpolation splines with n free knots (i.e., a sampling design, a mesh). The approximation performance is measured by mean errors (e.g., integrated or maximal quadratic mean errors). We construct a sequence of sampling designs with asymptotic approximation rate n^(m+β) for the whole interval.

1. Numerical analysis for random processes and fields and related design problems$(function(){PrimeFaces.cw("OverlayPanel","overlay437283",{id:"formSmash:j_idt944:0:j_idt951",widgetVar:"overlay437283",target:"formSmash:j_idt944:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1619",{id:"formSmash:j_idt1619",widgetVar:"widget_formSmash_j_idt1619",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1672",{id:"formSmash:lower:j_idt1672",widgetVar:"widget_formSmash_lower_j_idt1672",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1673_j_idt1675",{id:"formSmash:lower:j_idt1673:j_idt1675",widgetVar:"widget_formSmash_lower_j_idt1673_j_idt1675",target:"formSmash:lower:j_idt1673:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});