umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Autonomous Object Category Learning for Service Robots Using Internet Resources
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
2016 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

With the developments in the field of Artificial Intelligence (AI), robots are becoming smarter, more efficient and capable of doing more dififcult tasks than before. Recent progress in Machine Learning has revolutionized the field of AI. Rather than performing pre-programmed tasks, nowadays robots are learning things, and becoming more autonomous along the way. However, in most of the cases, robots need a certain level of human assistance to learn something. To recognize or classify daily objects is a very important skill that a service robot should possess. In this research work, we have implemented a fully autonomous object category learning system for service robots, where the robot uses internet resources to learn object categories. It gets the name of an unknown object by performing reverse image search in the internet search engines, and applying a verification strategy afterwards. Then the robot retrieves a number of images of that object from internet and use those to generate training data for learning classifiers. The implemented system is tested in actual domestic environment. The classification performance is examined against some object categories from a benchmark dataset. The system performed decently with 78:40% average accuracy on ve object categories taken from the benchmark dataset and showed promising results in real domestic scenarios. There are existing research works that deal with object category learning for robots using internet images. But those works use Human-in-the-loop models, where humans assist the robot to get the object name for using it as a search cue to retrieve training images from internet. Our implemented system eliminates the necessity of human assistance by making the task of object name determination automatic. This facilitates the whole process of learning object categories with full autonomy, which is the main contribution of this research.

sted, utgiver, år, opplag, sider
2016. , s. 58
Serie
UMNAD ; 1064
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-128299OAI: oai:DiVA.org:umu-128299DiVA, id: diva2:1051138
Utdanningsprogram
Master's Programme in Robotics and Control
Veileder
Examiner
Tilgjengelig fra: 2016-12-01 Laget: 2016-12-01 Sist oppdatert: 2016-12-01bibliografisk kontrollert

Open Access i DiVA

fulltext(11081 kB)233 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 11081 kBChecksum SHA-512
b89c4247aa37f5841bb7c6c38adb810883c08f23ab39db9c8fb5dcccf1650091fc1dc42c34c665450d7a7d48a8ed1948c1a056d4111698128cd1abf28a6b4826
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 233 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 1305 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf