umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Alterations in Peptidoglycan Cross-Linking Suppress the Secretin Assembly Defect Caused by Mutation of GspA in the Type II Secretion System
Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
Vise andre og tillknytning
2017 (engelsk)Inngår i: Journal of Bacteriology, ISSN 0021-9193, E-ISSN 1098-5530, Vol. 199, nr 8, UNSP e00617-16Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In Gram-negative bacteria, the peptidoglycan (PG) cell wall is a significant structural barrier for outer membrane protein assembly. In Aeromonas hydrophila, outer membrane multimerization of the type II secretion system (T2SS) secretin ExeD requires the function of the inner membrane assembly factor complex ExeAB. The putative mechanism of the complex involves the reorganization of PG and localization of ExeD, whereby ExeA functions by interacting with PG to form a site for secretin assembly and ExeB forms an interaction with ExeD. This mechanism led us to hypothesize that increasing the pore size of PG would circumvent the requirement for ExeA in the assembly of the ExeD secretin. Growth of A. hydrophila in 270 mM Gly reduced PG cross-links by approximately 30% and led to the suppression of secretin assembly defects in exeA strains and in those expressing ExeA mutants by enabling localization of the secretin in the outer membrane. We also established a heterologous ExeD assembly system in Escherichia coli and showed that ExeAB and ExeC are the only A. hydrophila proteins required for the assembly of the ExeD secretin in E. coli and that ExeAB-independent assembly of ExeD can occur upon overexpression of the D, D-carboxypeptidase PBP 5. These results support an assembly model in which, upon binding to PG, ExeA induces multimerization and pore formation in the sacculus, which enables ExeD monomers to interact with ExeB and assemble into a secretin that both is inserted in the outer membrane and crosses the PG layer to interact with the inner membrane platform of the T2SS. IMPORTANCE The PG layer imposes a strict structural impediment for the assembly of macromolecular structures that span the cell envelope and serve as virulence factors in Gram-negative species. This work revealed that by decreasing PG crosslinking by growth in Gly, the absolute requirement for the PG-binding activity of ExeA in the assembly of the ExeD secretin was alleviated in A. hydrophila. In a heterologous assembly model in E. coli, expression of the carboxypeptidase PBP 5 could relieve the requirement for ExeAB in the assembly of the ExeD secretin. These results provide some mechanistic details of the ExeAB assembly complex function, in which the PG-binding and oligomerization functions of ExeAB are used to create a pore in the PG that is required for secretin assembly.

sted, utgiver, år, opplag, sider
2017. Vol. 199, nr 8, UNSP e00617-16
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-134731DOI: 10.1128/JB.00617-16ISI: 000399323500003OAI: oai:DiVA.org:umu-134731DiVA: diva2:1094931
Tilgjengelig fra: 2017-05-11 Laget: 2017-05-11 Sist oppdatert: 2017-05-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Hernandez, Sara B.Cava, Felipe
Av organisasjonen
I samme tidsskrift
Journal of Bacteriology

Søk utenfor DiVA

GoogleGoogle Scholar

Altmetric

Totalt: 22 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf