umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A total bounded variation approach to low visibility estimation on expressways
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik. College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China; School of Electrical Engineering and Computer Science, Royal Institute of Technology, Stockholm, Sweden.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik. School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi'an, China. (Building Energy Efficiency)
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
Vise andre og tillknytning
2018 (engelsk)Inngår i: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 18, nr 2, artikkel-id 392Artikkel i tidsskrift, Editorial material (Fagfellevurdert) Published
Abstract [en]

Low visibility on expressways caused by heavy fog and haze is a main reason for traffic accidents. Real-time estimation of atmospheric visibility is an effective way to reduce traffic accident rates. With the development of computer technology, estimating atmospheric visibility via computer vision becomes a research focus. However, the estimation accuracy should be enhanced since fog and haze are complex and time-varying. In this paper, a total bounded variation (TBV) approach to estimate low visibility (less than 300 m) is introduced. Surveillance images of fog and haze are processed as blurred images (pseudo-blurred images), while the surveillance images at selected road points on sunny days are handled as clear images, when considering fog and haze as noise superimposed on the clear images. By combining image spectrum and TBV, the features of foggy and hazy images can be extracted. The extraction results are compared with features of images on sunny days. Firstly, the low visibility surveillance images can be filtered out according to spectrum features of foggy and hazy images. For foggy and hazy images with visibility less than 300 m, the high-frequency coefficient ratio of Fourier (discrete cosine) transform is less than 20%, while the low-frequency coefficient ratio is between 100% and 120%. Secondly, the relationship between TBV and real visibility is established based on machine learning and piecewise stationary time series analysis. The established piecewise function can be used for visibility estimation. Finally, the visibility estimation approach proposed is validated based on real surveillance video data. The validation results are compared with the results of image contrast model. Besides, the big video data are collected from the Tongqi expressway, Jiangsu, China. A total of 1,782,000 frames were used and the relative errors of the approach proposed are less than 10%.

sted, utgiver, år, opplag, sider
MDPI , 2018. Vol. 18, nr 2, artikkel-id 392
Emneord [en]
total bounded variation, image spectrum, low visibility estimation, piece stationary, fog and haze
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-144176DOI: 10.3390/s18020392ISI: 000427544000075PubMedID: 29382181OAI: oai:DiVA.org:umu-144176DiVA, id: diva2:1177090
Tilgjengelig fra: 2018-01-24 Laget: 2018-01-24 Sist oppdatert: 2018-06-09bibliografisk kontrollert

Open Access i DiVA

fulltext(8024 kB)53 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 8024 kBChecksum SHA-512
953bc4dc1116da4152a681392ddd9156e704a575ecbe08503cfd553699f1eff864f7ebf6ddc3c9f30b448be67d1344edc4b206ad0b4bc1e58c2ed80cac9ee91e
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Cheng, XiaogangYang, BinOlofsson, ThomasLi, Haibo

Søk i DiVA

Av forfatter/redaktør
Cheng, XiaogangYang, BinOlofsson, ThomasLi, Haibo
Av organisasjonen
I samme tidsskrift
Sensors

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 53 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 466 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf