umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Prediction of activation patterns preceding hallucinations in patients with schizophrenia using machine learning with structured sparsity
NeuroSpin, CEA, Paris-Saclay, Gif-sur-Yvette, France.
Univ. Lille, CNRS UMR 9193, Laboratoire de Sciences Cognitives et Sciences Affectives (SCALab), PsyCHIC team, Lille F- 59000, France; CHU Lille, Pôle de Psychiatrie, Unité CURE, Lille F-59000, France.
Energy Transition Institute: VeDeCoM, France.
Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik.ORCID-id: 0000-0001-7119-7646
Vise andre og tillknytning
2018 (engelsk)Inngår i: Human Brain Mapping, ISSN 1065-9471, E-ISSN 1097-0193, Vol. 39, nr 4, s. 1777-1788Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Despite significant progress in the field, the detection of fMRI signal changes during hallucinatory events remains difficult and time-consuming. This article first proposes a machine-learning algorithm to automatically identify resting-state fMRI periods that precede hallucinations versus periods that do not. When applied to whole-brain fMRI data, state-of-the-art classification methods, such as support vector machines (SVM), yield dense solutions that are difficult to interpret. We proposed to extend the existing sparse classification methods by taking the spatial structure of brain images into account with structured sparsity using the total variation penalty. Based on this approach, we obtained reliable classifying performances associated with interpretable predictive patterns, composed of two clearly identifiable clusters in speech-related brain regions. The variation in transition-to-hallucination functional patterns not only from one patient to another but also from one occurrence to the next (e.g., also depending on the sensory modalities involved) appeared to be the major difficulty when developing effective classifiers. Consequently, second, this article aimed to characterize the variability within the prehallucination patterns using an extension of principal component analysis with spatial constraints. The principal components (PCs) and the associated basis patterns shed light on the intrinsic structures of the variability present in the dataset. Such results are promising in the scope of innovative fMRI-guided therapy for drug-resistant hallucinations, such as fMRI-based neurofeedback.

sted, utgiver, år, opplag, sider
2018. Vol. 39, nr 4, s. 1777-1788
Emneord [en]
hallucinations, machine learning, real-time fMRI, resting-state networks, schizophrenia
HSV kategori
Forskningsprogram
datoriserad bildanalys
Identifikatorer
URN: urn:nbn:se:umu:diva-145654DOI: 10.1002/hbm.23953ISI: 000427117300023PubMedID: 29341341OAI: oai:DiVA.org:umu-145654DiVA, id: diva2:1189862
Tilgjengelig fra: 2018-03-13 Laget: 2018-03-13 Sist oppdatert: 2018-06-09bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Löfstedt, Tommy

Søk i DiVA

Av forfatter/redaktør
Löfstedt, Tommy
Av organisasjonen
I samme tidsskrift
Human Brain Mapping

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 201 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf