umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automated alarm and root-cause analysis based on real time high-dimensional process data: Part of a joint research project between UmU, Volvo AB & Volvo Cars
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
2018 (engelsk)Independent thesis Advanced level (professional degree), 20 poäng / 30 hpOppgave
Abstract [en]

Today, a large amount of raw data are available within manufacturing industries. Unfortunately, most of it is not further analyzed in search of valuable information regarding the optimization of processes. In the painting process at the Volvo plant in Umeå, adjusted settings on the process equipments (e.g. robots, machines etc.) are mostly based on the experience of the personnel rather than actual facts (i.e. analyzed data). Consequently, time- and cost waste caused by defects is obtained when painting the commercial heavy-duty truck bodies (cabs). Hence, the aim of this masters thesis is to model the quality as a function of available background- and process data. This should be presented in an automated alarm and root-cause system.

A variety of supervised learning algorithms were trained in order to estimate the probability of having at least one defect per cab. Even with a small amount of data, results have shown that such algorithms can provide valuable information. Later in this thesis work, one of the algorithms was chosen and used as the underlying model in the prototype of an automated alarm system. When this probability was considered as too high, an intuitive root-cause analysis was presented. Ultimately, this research has demonstrated the importance and possibility of analyzing data with statistical tools in the search of limiting costs- and time waste.

sted, utgiver, år, opplag, sider
2018. , s. 57
Emneord [en]
Machine Learning, classification analysis, supervised learning
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-148511OAI: oai:DiVA.org:umu-148511DiVA, id: diva2:1214556
Eksternt samarbeid
Volvo AB
Utdanningsprogram
Master of Science in Engineering and Management
Veileder
Examiner
Tilgjengelig fra: 2018-06-12 Laget: 2018-06-07 Sist oppdatert: 2018-06-12bibliografisk kontrollert

Open Access i DiVA

fulltext(23071 kB)190 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 23071 kBChecksum SHA-512
f771202ff2618dbfc24af87ffd65aea252f0f0f733601d31bdd07fb44f7aeef9b6e7378677b6a48f8199a3aa53cb6b800e1d0be32ea37337572d9bd5425b8643
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Harbs, JustinSvensson, Jack
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 190 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 1111 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf