umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Classification of Heart Sounds with Deep Learning
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
2018 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

Health care is becoming more and more digitalized and examinations of patients from a distance are closer to reality than fiction. One of these examinations would be to automatically classify a patient-recorded audiosegment of its heartbeats as healthy or pathological. This thesis examines how it can be achieved by examining different kinds of neural networks; convolutional neural networks (CNN) and long short-term memory networks (LSTM). The theory of artificial neural networks is explained. With this foundation, the feed forward CNN and the recurrent LSTM-network have their methods described. Before these methods can be used, the required pre-processing has to be completed, which is different for the two types of networks. Using this theory, the process of how to implement the networks in Matlab is explained. Different CNN:s are compared to each other, then the best performing CNN is compared to the LSTM-network. When comparing the two different networks to each other, cross validation is used to achieve the most correct result possible. The networks are compared by accuracy, least amount of training time and least amount of training data. A final resulti s presented, to show which type of network has the best performance, together with a discussion to explain the results. The CNN performed better than the LSTM-network in all aspects. A reflection on what could have been done differently to achieve a better result is posted.

sted, utgiver, år, opplag, sider
2018. , s. 52
Serie
UMNAD ; 1146
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-149699OAI: oai:DiVA.org:umu-149699DiVA, id: diva2:1223890
Eksternt samarbeid
Västerbotten County Council Biomedical Engineering R&D
Utdanningsprogram
Master of Science Programme in Computing Science and Engineering
Veileder
Examiner
Tilgjengelig fra: 2018-06-26 Laget: 2018-06-26 Sist oppdatert: 2018-06-26bibliografisk kontrollert

Open Access i DiVA

fulltext(805 kB)668 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 805 kBChecksum SHA-512
bcb1b484430a41b3c99452584ee965b5560ef59b677a6f049a058d13f0e5baecb931541b2dffb9feda6092ff18d657b23cf9131f49d27f2c6aa06eb7be1c7253
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 668 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 1267 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf