umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Acoustic boundary layers as boundary conditions
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.ORCID-id: 0000-0003-0473-3263
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.ORCID-id: 0000-0001-8329-8348
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
2018 (engelsk)Inngår i: Journal of Computational Physics, ISSN 0021-9991, E-ISSN 1090-2716, Vol. 371, s. 633-650Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The linearized, compressible Navier-Stokes equations can be used to model acoustic wave propagation in the presence of viscous and thermal boundary layers. However, acoustic boundary layers are notorious for invoking prohibitively high resolution requirements on numerical solutions of the equations. We derive and present a strategy for how viscous and thermal boundary-layer effects can be represented as a boundary condition on the standard Helmholtz equation for the acoustic pressure. This boundary condition constitutes an O (delta) perturbation, where delta is the boundary-layer thickness, of the vanishing Neumann condition for the acoustic pressure associated with a lossless sound-hard wall. The approximate model is valid when the wavelength and the minimum radius of curvature of the wall is much larger than the boundary layer thickness. In the special case of sound propagation in a cylindrical duct, the model collapses to the classical Kirchhoff solution. We assess the model in the case of sound propagation through a compression driver, a kind of transducer that is commonly used to feed horn loudspeakers. Due to the presence of shallow chambers and thin slits in the device, it is crucial to include modeling of visco-thermal losses in the acoustic analysis. The transmitted power spectrum through the device calculated numerically using our model agrees well with computations using a hybrid model, where the full linearized, compressible Navier-Stokes equations are solved in the narrow regions of the device and the inviscid Helmholtz equations elsewhere. However, our model needs about two orders of magnitude less memory and computational time than the more complete model. 

sted, utgiver, år, opplag, sider
Elsevier, 2018. Vol. 371, s. 633-650
Emneord [en]
Acoustics, Visco-thermal boundary layers, Helmholtz equation, Wentzell boundary condition, Compression driver
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-150643DOI: 10.1016/j.jcp.2018.06.005ISI: 000438393900031Scopus ID: 2-s2.0-85048401964OAI: oai:DiVA.org:umu-150643DiVA, id: diva2:1244262
Forskningsfinansiär
Swedish Research Council, 621-2013-3706Swedish Foundation for Strategic Research , AM13-0029Tilgjengelig fra: 2018-08-31 Laget: 2018-08-31 Sist oppdatert: 2018-08-31bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Berggren, MartinBernland, AndersNoreland, Daniel

Søk i DiVA

Av forfatter/redaktør
Berggren, MartinBernland, AndersNoreland, Daniel
Av organisasjonen
I samme tidsskrift
Journal of Computational Physics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 434 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf