umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Biochemical analysis of the strand annealing activity of the S. pombe Pif1 helicase
Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
Abstract [en]

Pif1 helicases are evolutionary conserved and important for maintaining genome integrity. The S. pombe Pif1 helicase, Pfh1, unwinds DNA/DNA and RNA/DNA substrates and has both protein displacement and strand annealing activities. Here, we characterized the strand annealing properties of Pfh1. Although Pfh1 showed higher strand annealing activity on complementary oligonucleotides that produced DNA/DNA substrates, it could also anneal complementary RNA and DNA oligonucleotides. Strand annealing occurred in both the presence and absence of ATP, showing that binding of ATP does not inhibit strand annealing. Analysis of Pfh1 truncated mutants showed that the strand annealing activity of Pfh1 was primarily located on the N-terminus region, but that the C-terminus region also mediated some strand annealing activity. The N-terminus region was even more efficient than full-length Pfh1 to perform strand annealing, but in contrast to the full-length Pfh1, N-terminus Pfh1 was unable to stably bind single-stranded oligonucleotides. However, both proteins efficiently bound an intermolecular G-quadruplex DNA, showing that the N-terminus region can stably bind certain oligonucleotides, but not single-stranded oligonucleotides. These data suggest that the binding preference for single-stranded oligonucleotides is not the only important factor for Pfh1 to perform efficient strand annealing, but that other properties of the protein is also important for the annealing efficiency.

Emneord [en]
Pfh1, Pif1, DNA helicase, Annealing
HSV kategori
Forskningsprogram
medicinsk biokemi
Identifikatorer
URN: urn:nbn:se:umu:diva-155474OAI: oai:DiVA.org:umu-155474DiVA, id: diva2:1279883
Forskningsfinansiär
Knut and Alice Wallenberg FoundationSwedish Society for Medical Research (SSMF)Tilgjengelig fra: 2019-01-17 Laget: 2019-01-17 Sist oppdatert: 2019-01-22
Inngår i avhandling
1. Biochemical analysis of Pfh1, the essential Pif1 family helicase in Schizosaccharomyces pombe
Åpne denne publikasjonen i ny fane eller vindu >>Biochemical analysis of Pfh1, the essential Pif1 family helicase in Schizosaccharomyces pombe
2019 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

DNA stores the genetic information of all living organisms, and this information needs to be copied accurately and passed on to each daughter cell when a cell divides. However, the DNA replication machinery often meets obstacles in the genome that cause fork pausing and might result in DNA damage. DNA helicases are motor proteins that unwind duplex DNA structures using the energy from ATP hydrolysis. Helicases can also assist in replication fork progression by resolving obstacles that arise at hard-to-replicate sites such as tightly DNA-bound proteins, R-loops, and DNA secondary structures like G-quadruplexes (G4s). In this thesis, we focused on Schizosaccharomyces pombe DNA helicase Pfh1, which is localized in both the nucleus and the mitochondria and belongs to the evolutionary conserved Pif1 helicases. Pfh1 is an accessory replicative helicase, and the goal in this thesis was to gain a better mechanistic understanding of the role of nuclear Pfh1 (nPfh1). Our first aim was to elucidate the role of nPfh1 at G-quadruplex (G4) DNA. Aim two was to understand the function of nPfh1’s signature motif. Aim three was to characterize the role of nPfh1 in strand annealing.

Some G-rich sequences can form a four-stranded DNA structure called G4 DNA, and the S. pombe genome contains about 450 bioinformatically predicted G4 structures. We selected two of these sequences, one located in the ribosomal DNA region and one located in the telomeric DNA region, and showed that they form inter- and intramolecular G4 structures, respectively. Next, we established a method to express and purify recombinant nPfh1 and demonstrated that nPfh1 binds to and unwinds these structures. In addition, Pfh1 bound to both the ribosomal and telomeric DNA regions in vivo, suggesting that Pfh1 can bind and unwind G4 structures in vivo. The purified nPfh1 also unwound RNA/DNA more efficiently than DNA/DNA structures, suggesting that nPfh1 has the ability to unwind R-loops in vivo. nPfh1 also showed protein displacement activity, suggesting that it can remove tightly bound proteins from DNA. All of these properties of nPfh1 suggest that it is important for fork progression and for preserving genome integrity.

Furthermore, nPfh1 stimulated strand annealing, and this activity did not require ATP hydrolysis. The strand-annealing activity was higher for complementary DNA/DNA compared to RNA/DNA substrates and did not require a DNA overhang. Furthermore, by analyzing Pfh1 truncated variants we demonstrated that the N-terminus region of Pfh1 was mainly responsible for the strand-annealing activity, however the C-terminus region also possessed some strand-annealing activity. Point mutations in the Pif1 signature motif (SM) have been shown to be associated with an increased risk of breast cancer in humans and with inviable S. pombe cells. We purified several SM variants and found that the unwinding and protein displacement activities of nPfh1 were dependent on the SM, but not the strand-annealing activity, suggesting that the SM is important for functions that require ATP hydrolysis.

In conclusion, in this thesis we identified nPfh1 as a potent G4 unwinder, and this is the only G4 unwinder identified in S. pombe to date. We also provided detailed mechanistic insights into nPfh1 and its different domains, and this has enhanced our understanding of Pfh1’s role in maintaining genome integrity.

sted, utgiver, år, opplag, sider
Umeå: Umeå Universitet, 2019. s. 38
Serie
Umeå University medical dissertations, ISSN 0346-6612 ; 2011
Emneord
G4, Pfh1, Genome integrity, helicase
HSV kategori
Forskningsprogram
medicinsk biokemi
Identifikatorer
urn:nbn:se:umu:diva-155477 (URN)978-91-7855-020-3 (ISBN)
Disputas
2019-02-15, KB:E3.01, Lilla Hörsalen, KBC-huset, Umeå, 13:00 (engelsk)
Opponent
Veileder
Forskningsfinansiär
Knut and Alice Wallenberg FoundationSwedish Society for Medical Research (SSMF)Wenner-Gren FoundationsThe Kempe FoundationsSwedish Research Council
Tilgjengelig fra: 2019-01-25 Laget: 2019-01-17 Sist oppdatert: 2019-01-23bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Personposter BETA

Mohammad, Jani B.Sabouri, Nasim

Søk i DiVA

Av forfatter/redaktør
Mohammad, Jani B.Sabouri, Nasim
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 87 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf