umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A new least squares stabilized Nitsche method for cut isogeometric analysis
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.ORCID-id: 0000-0002-1710-8494
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.ORCID-id: 0000-0001-5589-4521
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik. (UMIT)ORCID-id: 0000-0001-7838-1307
2019 (engelsk)Inngår i: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 349, s. 1-16Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We derive a new stabilized symmetric Nitsche method for enforcement of Dirichlet boundary conditions for elliptic problems of second order in cut isogeometric analysis (CutIGA). We consider C1 splines and stabilize the standard Nitsche method by adding a certain elementwise least squares terms in the vicinity of the Dirichlet boundary and an additional term on the boundary which involves the tangential gradient. We show coercivity with respect to the energy norm for functions in H2(Ω) and optimal order a priori error estimates in the energy and L2 norms. To obtain a well posed linear system of equations we combine our formulation with basis function removal which essentially eliminates basis functions with sufficiently small intersection with Ω. The upshot of the formulation is that only elementwise stabilization is added in contrast to standard procedures based on ghost penalty and related techniques and that the stabilization is consistent. In our numerical experiments we see that the method works remarkably well in even extreme cut situations using a Nitsche parameter of moderate size.

sted, utgiver, år, opplag, sider
Elsevier, 2019. Vol. 349, s. 1-16
Emneord [en]
Fictitious domain methods, Nitsche’s method, Least squares stabilization, Isogeometric analysis
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-156840DOI: 10.1016/j.cma.2019.02.011Scopus ID: 2-s2.0-85062154279OAI: oai:DiVA.org:umu-156840DiVA, id: diva2:1292662
Forskningsfinansiär
Swedish Research Council, 2013-4708Swedish Research Council, 2017-03911Swedish Foundation for Strategic Research , AM13-0029eSSENCE - An eScience CollaborationTilgjengelig fra: 2019-03-01 Laget: 2019-03-01 Sist oppdatert: 2019-06-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Elfverson, DanielLarson, Mats G.Larsson, Karl

Søk i DiVA

Av forfatter/redaktør
Elfverson, DanielLarson, Mats G.Larsson, Karl
Av organisasjonen
I samme tidsskrift
Computer Methods in Applied Mechanics and Engineering

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 232 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf