umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Extracting Primary Objects and Spatial Relations from Sentences
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. (Intelligent Robotics)
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. (Intelligent Robotics)
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. (Intelligent Robotics)
2019 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

In verbal human-robot interaction natural language utterances have to be grounded in visual scenes by the robot. Visual language grounding is a challenging task that includes identifying a primary object among several objects, together with the object properties and spatial relations among the objects. In this paper we focus on extracting this information from sentences only. We propose two language modelling techniques, one uses regular expressions and the other one utilizes Euclidian distance. We compare these two proposed techniques with two other techniques that utilize tree structures, namely an extended Hobb’s algorithm and an algorithm that utilizes a Stanford parse tree. A comparative analysis between all language modelling techniques shows that our proposed two approaches require less computational time than the tree-based approaches. All approaches perform good identifying the primary object and its property, but for spatial relation extraction the Stanford parse tree algorithm performs better than the other language modelling techniques. Time elapsed for the Stanford parse tree algorithm is higher than for the other techniques.

sted, utgiver, år, opplag, sider
2019.
Emneord [en]
Natural Language Grounding, Spatial Relation Extraction, Hobb’s Algorithm, Human-robot Interaction, NLTK, Google Speech, Stanford Parser
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-157635OAI: oai:DiVA.org:umu-157635DiVA, id: diva2:1299305
Konferanse
11th International Conference on Agents and Artificial Intelligence, Prague, Czech Republic, 19-21 February 2019.
Tilgjengelig fra: 2019-03-26 Laget: 2019-03-26 Sist oppdatert: 2019-03-29bibliografisk kontrollert

Open Access i DiVA

fulltext(676 kB)54 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 676 kBChecksum
Type fulltextMimetype application/pdf

Andre lenker

URL

Personposter BETA

Baranwal, NehaSingh, AvinashBensch, Suna

Søk i DiVA

Av forfatter/redaktør
Baranwal, NehaSingh, AvinashBensch, Suna
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 54 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 213 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf