umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Cut topology optimization for linear elasticity with coupling to parametric nondesign domain regions
University College London, UK, Department of Mathematics.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.ORCID-id: 0000-0002-1710-8494
Jönköping University, School of Engineering, JTH, Product Development.ORCID-id: 0000-0001-7352-1550
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.ORCID-id: 0000-0001-5589-4521
Vise andre og tillknytning
2019 (engelsk)Inngår i: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 350, s. 462-479Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We develop a density based topology optimization method for linear elasticity based on the cut finite element method. More precisely, the design domain is discretized using cut finite elements which allow complicated geometry to be represented on a structured fixed background mesh. The geometry of the design domain is allowed to cut through the background mesh in an arbitrary way and certain stabilization terms are added in the vicinity of the cut boundary, which guarantee stability of the method. Furthermore, in addition to standard Dirichlet and Neumann conditions we consider interface conditions enabling coupling of the design domain to parts of the structure for which the design is already given. These given parts of the structure, called the nondesign domain regions, typically represents parts of the geometry provided by the designer. The nondesign domain regions may be discretized independently from the design domains using for example parametric meshed finite elements or isogeometric analysis. The interface and Dirichlet conditions are based on Nitsche's method and are stable for the full range of density parameters. In particular we obtain a traction-free Neumann condition in the limit when the density tends to zero.

sted, utgiver, år, opplag, sider
Elsevier, 2019. Vol. 350, s. 462-479
Emneord [en]
Material distribution topology optimization, Design and nondesign domain regions, Cut finite element method
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-157679DOI: 10.1016/j.cma.2019.03.016ISI: 000468163500019OAI: oai:DiVA.org:umu-157679DiVA, id: diva2:1300682
Forskningsfinansiär
Swedish Research Council, 2013-4708Swedish Research Council, 2017-03911Swedish Research Council, 2018-05262Swedish Foundation for Strategic Research , AM13-0029eSSENCE - An eScience Collaboration, -Tilgjengelig fra: 2019-03-29 Laget: 2019-03-29 Sist oppdatert: 2019-06-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Elfverson, DanielLarson, Mats G.Larsson, Karl

Søk i DiVA

Av forfatter/redaktør
Elfverson, DanielHansbo, PeterLarson, Mats G.Larsson, Karl
Av organisasjonen
I samme tidsskrift
Computer Methods in Applied Mechanics and Engineering

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 296 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf