umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Hybrid Statistical-Dynamical Downscaling of Air Temperature over Scandinavia using the WRF model
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
Group of Atmospheric Science, Division of Space Technology, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology.
Novia University of Applied Sciences, Vaasa, Finland.
Group of Atmospheric Science, Division of Space Technology, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology.
Vise andre og tillknytning
2020 (engelsk)Inngår i: Advances in Atmospheric Sciences, ISSN 0256-1530, E-ISSN 1861-9533, Vol. 37, s. 57-74Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

An accurate simulation of air temperature at local-scales is crucial for the vast majority of weather and climate applications. In this work, a hybrid statistical-dynamical downscaling method and a high-resolution dynamical-only downscaling method are applied to daily mean, minimum and maximum air temperatures to investigate the quality of local scale estimates produced by downscaling. These two downscaling approaches are evaluated using station observation data obtained from the Finnish Meteorological Institute (FMI) over a near-coastal region of western Finland. The dynamical downscaling is performed with the Weather Research and Forecasting (WRF) model, and the statistical downscaling method implemented is the Cumulative Distribution Function-transform (CDF-t). The CDF-t is trained using 20-years of WRF-downscaled Climate Forecast System Reanalysis (CFSR) data over the region at 3 km spatial resolution for the central month of each season. The performance of the two methods is assessed qualitatively, by inspection of quantile-quantile (Q-Q) plots, and quantitatively, through the Cramer-von Mises (CvM), mean absolute error (MAE), and root-mean-square Error (RMSE) diagnostics. The hybrid approach is found to provide significantly more skillful forecasts of the observed daily mean and maximum air temperatures than those of the dynamical-only downscaling (for all seasons). The hybrid method proved to be less computationally expensive, and also to give more skillful temperature forecasts (at least for the Finnish near-coastal region).

sted, utgiver, år, opplag, sider
Springer, 2020. Vol. 37, s. 57-74
Emneord [en]
WRF, air temperature, CDF-t, hybrid statistical-dynamical downscaling, model evaluation, Scandinavian Peninsula.
HSV kategori
Forskningsprogram
matematisk statistik
Identifikatorer
URN: urn:nbn:se:umu:diva-162956DOI: 10.1007/s00376-019-9091-0ISI: 000518185100005OAI: oai:DiVA.org:umu-162956DiVA, id: diva2:1348167
Prosjekter
WindCoETilgjengelig fra: 2019-09-03 Laget: 2019-09-03 Sist oppdatert: 2020-03-23bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Wang, JianfengYu, Jun

Søk i DiVA

Av forfatter/redaktør
Wang, JianfengYu, Jun
Av organisasjonen
I samme tidsskrift
Advances in Atmospheric Sciences

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 274 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf