Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Trajectory clustering of road traffic in urban environments using incremental machine learning in combination with hyperdimensional computing
Vise andre og tillknytning
2019 (engelsk)Inngår i: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), IEEE, 2019, s. 1664-1670Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Road traffic congestion in urban environments poses an increasingly complex challenge of detection, profiling and prediction. Although public policy promotes transport alternatives and new infrastructure, traffic congestion is highly prevalent and continues to be the lead cause for numerous social, economic and environmental issues. Although a significant volume of research has been reported on road traffic prediction, profiling of traffic has received much less attention. In this paper we address two key problems in traffic profiling by proposing a novel unsupervised incremental learning approach for road traffic congestion detection and profiling, dynamically over time. This approach uses (a) hyperdimensional computing to enable capture variable-length trajectories of commuter trips represented as vehicular movement across intersections, and (b) transforms these into feature vectors that can be incrementally learned over time by the Incremental Knowledge Acquiring Self-Learning (IKASL) algorithm. The proposed approach was tested and evaluated on a dataset consisting of approximately 190 million vehicular movement records obtained from 1,400 Bluetooth identifiers placed at the intersections of the arterial road network in the State of Victoria, Australia.

sted, utgiver, år, opplag, sider
IEEE, 2019. s. 1664-1670
Serie
IEEE International Conference on Intelligent Transportation Systems-ITSC, ISSN 2153-0009
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-170026DOI: 10.1109/ITSC.2019.8917320ISI: 000521238101111Scopus ID: 2-s2.0-85076810049ISBN: 9781538670248 (digital)ISBN: 9781538670255 (tryckt)OAI: oai:DiVA.org:umu-170026DiVA, id: diva2:1427577
Konferanse
IEEE Intelligent Transportation Systems Conference (IEEE-ITSC), OCT 27-30, 2019, Auckland, NEW ZEALAND
Tilgjengelig fra: 2020-04-30 Laget: 2020-04-30 Sist oppdatert: 2023-03-23bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Wiklund, Urban

Søk i DiVA

Av forfatter/redaktør
Wiklund, Urban
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 204 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf