umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Characterization of hydrous manganite (γ-MnOOH) surfaces - an XPS study
Umeå universitet, Teknisk-naturvetenskaplig fakultet, Kemi.
2002 Inngår i: Surface and Interface Analysis, Vol. 34, s. 632-636Artikkel i tidsskrift (Fagfellevurdert) Published
sted, utgiver, år, opplag, sider
2002. Vol. 34, s. 632-636
Identifikatorer
URN: urn:nbn:se:umu:diva-3912OAI: oai:DiVA.org:umu-3912DiVA, id: diva2:142819
Tilgjengelig fra: 2004-04-29 Laget: 2004-04-29bibliografisk kontrollert
Inngår i avhandling
1. Chemical Processes at the Water-Manganite (γ-MnOOH) Interface
Åpne denne publikasjonen i ny fane eller vindu >>Chemical Processes at the Water-Manganite (γ-MnOOH) Interface
2004 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Alternativ tittel[sv]
Kemiska Processer vid gränsytan mellan vatten och manganit (γ-MnOOH)
Abstract [en]

The chemistry of mineral surfaces is of great importance in many different areas including natural processes occurring in oceans, rivers, lakes and soils. Manganese (hydr)oxides are one important group to these natural processes, and the thermodynamically most stable trivalent manganese (hydr)oxide, manganit (γ-MnOOH), is studied in this thesis.

This thesis summarises six papers in which the surface chemistry of synthetic manganite has been investigated with respect to surface acid-base properties, dissolution, and adsorption of Cd(II) and the herbicide N-(phosphonomethyl)glycine (glyphosate, PMG). In these papers, a wide range of analysis techniques were used, including X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS) spectroscopy, Fourier transform infra-red (FTIR) spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), potentiometry, electrophoretic mobility measurements and wet chemical techniques, in order to obtain a more complete understanding of the different processes occurring at the manganite-water interface.

From the combined use of these techniques, a 1-pKa acid-base model was established that is valid at pH>6. The model includes a Na+ interaction with the surface:

=MnOH2+½ --> =MnOH-½ + H+ log β0 (intr.) = -8.20 = -pHiep

=MnOH2+½ + Na+ --> =MnOHNa+½ + H+ log β0 (intr.) = -9.64

At pH<6 the manganite crystals dissolve and disproportionate into pyrolusite (β-MnO2) and Mn(II)-ions in solution according to:

2 γ-MnOOH + 2H+ --> β-MnO2 + Mn2+ + 2H2O log K0 = 7.61 ± 0.10

The adsorption and co-adsorption of Cd(II) and glyphosate at the manganite surface was studied at pH>6. Cd(II) adsorption displays an adsorption edge at pH~8.5. Glyphosate adsorbs over the entire pH range, but the adsorption decreases with increasing pH. When the two substances are co-adsorbed, the adsorption of Cd(II) is increased at low pH but decreased at high pH. The adsorption of glyphosate is increased in the entire pH range in the presence of Cd(II). From XPS, FTIR and EXAFS it was found that glyphosate and Cd(II) form inner sphere complexes. The binary Cd(II)-surface complex is bonded by edge sharing of Mn and Cd octahedra on the (010) plane of manganite. Glyphosate forms inner-sphere complexes through an interaction between the phosphonate group and the manganite surface. The largest fraction of this binary glyphosate complex is protonated throughout the pH range. A ternary surface complex is also present, and its structure is explained as type B ternary surface complex (surface-glyphosate-Cd(II)). The chelating rings between the Cd(II) and glyphosate, found in aqueous complexes, are maintained at the surface, and the ternary complex is bound to the surface through the phosphonate group of the ligand.

Publisher
s. 74
Emneord
Inorganic chemistry, manganite, γ-MnOOH, mineral surface, acid-base properties, adsorption, Cd(II), N-(phosphonomethyl)glycine, glyphosate, PMG, surface complex, dissolution, disproportionation, XPS, EXAFS, infrared spectroscopy, SEM, AFM, potentiometry, electrophoresis, Oorganisk kemi
HSV kategori
Forskningsprogram
oorganisk kemi
Identifikatorer
urn:nbn:se:umu:diva-253 (URN)91-7305-634-0 (ISBN)
Disputas
2004-05-19, KB3B1, KBC, Umeå University, Umeå, 13:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2004-04-29 Laget: 2004-04-29 Sist oppdatert: 2018-06-09bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

http://www3.interscience.wiley.com/cgi-bin/fulltext/98517371/PDFSTART
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 91 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf