Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Energy Consumption Trade-Offs Of Computating Offloading in 5G Networks
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
2023 (engelsk)Independent thesis Advanced level (professional degree), 20 poäng / 30 hpOppgave
Abstract [en]

The launch of the 5th Generation (5G) mobile network allows for wireless communication at increased throughput rates and reduced latency compared to its predecessors and has opened for new possibilities in terms of computation offloading where demanding processes can be referred to powerful servers.User equipment (UE), i.e. wireless devices connected to a network, can benefit from offloading computational tasks to servers. Not only does it extend UE's computational resources, but also has the potential to reduce its energy consumption as it effectively redistributes the computational load to the server.This thesis is a study into the energy consumption trade-offs of this procedure for which a case study is done on a computer connected to a 5G network and tasked with the computation of a specific algorithm. Specifically, a comparison is made on the power consumption of computing the algorithm on the UE's central processing unit (CPU) and offloading it via a 5G modem, respectively, and a theoretical framework describing algorithms in terms of their utilization of these components is presented. By experimentally profiling the power consumption of the components and an algorithm's utilization thereof, these trade-offs can be quantified for a variety of signalling conditions. While the empirical study is a test case of a characteristic algorithm on a specific set of hardware components, the developed theoretical framework and methodology allows for the results to be extended to other hardware and algorithms, and general conclusions to be drawn on the energy consumption trade-offs in computation offloading. The results show that computation offloading is overwhelmingly beneficial in terms of power consumption and that the trade-offs only become comparable in certain edge cases. In particular, unless the CPU has an uncommonly low power consumption, the signal quality conditions are very poor or if the algorithm to be offloaded has a combination of low CPU load and high throughput requirements, offloading should always be considered a viable computational procedure in terms of energy consumption.

sted, utgiver, år, opplag, sider
2023.
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-210152OAI: oai:DiVA.org:umu-210152DiVA, id: diva2:1770629
Eksternt samarbeid
Ericsson
Fag / kurs
Examensarbete i teknisk fysik
Utdanningsprogram
Master of Science Programme in Engineering Physics
Presentation
2023-06-09, Umeå, Umeå, 13:00 (engelsk)
Veileder
Examiner
Tilgjengelig fra: 2023-06-21 Laget: 2023-06-19 Sist oppdatert: 2023-06-21bibliografisk kontrollert

Open Access i DiVA

fulltext(1268 kB)174 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1268 kBChecksum SHA-512
948bcfa4e46cacf6f707d787b2457d2a2a8a068b4b4f2f122b62358beacac3361b6ec90a64fe35a0df72b8baf57a6c374c15f8f5c6ade3b15363457a955eebf2
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Nilsson, Otto
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 174 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 357 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf