Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A multi-gene symbolic regression approach for predicting LGD: A benchmark comparative study
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
2023 (engelsk)Independent thesis Advanced level (professional degree), 20 poäng / 30 hpOppgave
Abstract [en]

Under the Basel accords for measuring regulatory capital requirements, the set of credit risk parameters probability of default (PD), exposure at default (EAD) and loss given default (LGD) are measured with own estimates by the internal rating based approach. The estimated parameters are also the foundation of understanding the actual risk in a banks credit portfolio. The predictive performance of such models are therefore interesting to examine. The credit risk parameter LGD has been seen to give low performance for predictive models and LGD values are generally hard to estimate. The main purpose of this thesis is to analyse the predictive performance of a multi-gene genetic programming approach to symbolic regression compared to three benchmark regression models. The goal of multi-gene symbolic regression is to estimate the underlying relationship in the data through a linear combination of a set of generated mathematical expressions. The benchmark models are Logit Transformed Regression, Beta Regression and Regression Tree. All benchmark models are frequently used in the area. The data used to compare the models is a set of randomly selected, de-identified loans from the portfolios of underlying U.S. residential mortgage-backed securities retrieved from International Finance Research. The conclusion from implementing and comparing the models is that, the credit risk parameter LGD is continued difficult to estimated, the symbolic regression approach did not yield a better predictive ability than the benchmark models and it did not seem to find the underlying relationship in the data. The benchmark models are more user-friendly with easier implementation and they all requires less calculation complexity than symbolic regression.

sted, utgiver, år, opplag, sider
2023. , s. 53
Emneord [en]
Symbolic regression, loss given default, credit risk, logit transformed regression, beta regression, multi-gene genetic programming, regression tree
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-210413OAI: oai:DiVA.org:umu-210413DiVA, id: diva2:1772213
Utdanningsprogram
Master of Science in Engineering and Management
Veileder
Examiner
Tilgjengelig fra: 2023-06-21 Laget: 2023-06-21 Sist oppdatert: 2023-06-21bibliografisk kontrollert

Open Access i DiVA

fulltext(11093 kB)352 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 11093 kBChecksum SHA-512
707b87b7617d2387cb476663369a824baf89175d54d196e13e99372e44f3e4cac686651e0d782628fa73e056bbdf765fbf840e9e119a09c2ac7a33f63397e37c
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 352 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 460 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf