Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Classification of Cable Shoe Presses on an Embedded System Using a Neural Network Implemented by Hand
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
2023 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

Pressing cables with cable shoes currently involves the use of high pressure to ensure successful crimping. However, this approach lacks the ability to detect when the pressing has been completed. Elpress intends to develop a handheld tool that can classify cables in real-time and stop the pressing before unnecessary energy is lost. This project is trying to solve this by creating a neural network on an embedded system, which will learn on the device. 

In a previous project, transferring TensorFlow and Scikit-learn models to embedded systems proved ineffective due to the limited memory capacities of the embedded system and large machine-learning models. Therefore, the neural network was instead implemented by hand on the embedded system directly. The implemented neural network was compared with a Python implementation, as well as with two traditional methods: linear regression, and averaging. The comparison focused on performance and memory consumption. The neural network was designed with 12 input nodes, one hidden layer consisting of 12 nodes, and an output layer of 11 nodes.

The highest accuracy achieved by the neural network implemented in C was 80\%, which is also the lowest accuracy that the other methods achieved. The neural network in C does not achieve equal or better precision compared to the traditional methods. However, since the neural network implemented in Python achieves higher accuracy, it should in theory be possible for the neural network in C as well.

sted, utgiver, år, opplag, sider
2023. , s. 49
Serie
UMNAD ; 1420
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-211060OAI: oai:DiVA.org:umu-211060DiVA, id: diva2:1776620
Eksternt samarbeid
Omicron Nord AB
Utdanningsprogram
Master of Science Programme in Computing Science and Engineering
Veileder
Examiner
Tilgjengelig fra: 2023-06-29 Laget: 2023-06-28 Sist oppdatert: 2023-06-29bibliografisk kontrollert

Open Access i DiVA

fulltext(2253 kB)195 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2253 kBChecksum SHA-512
bde19ba2868d3922c54c63dff8b5c321a4df6de72cd1f4542daffa77a156044237aec5f9ce9379448c30a76612d7e8573c6759b74437fb35aa531535c485a424
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 195 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 393 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf