Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Enhancing Anti-Poaching Efforts Through Predictive Analysis Of Animal Movements And Dynamic Environmental Factors
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
2023 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

This degree project addresses poaching challenges by employing predictive analysis of animal movements and their correlation with the dynamic environment using a machine learning approach. The goal is to provide accurate predictions of animal movements, enabling rangers to intercept potential threats and safeguard wildlife from snares. A wide analysis considers previous studies on animal movements and both animal and environment data availability. To efficiently represent the dynamic environment and correlate it with animal movement data, accurate matching of environment variables to each animal measurement is crucial. We selected multiple environment datasets to capture a sufficient amount ofenvironmental properties. Due to practical constraints, daily representation of the environment is not achievable, and weekly mean or monthly mode values are used instead. Data insights are obtained through the training of a regression neural network using the filtered environmental and animal movement data. The results highlight the significant role ofenvironmental features in predicting animal movements, emphasizing their importance for accurate predictions. Despite some offset and few erroneous predictions, a strong similarity between animal predicted trajectory and animal true trajectory was achieved, indicating that the model is capable to capture general patterns and to correctly tune in predictions of detailed movements as well. The overall offset of the trajectories is still a weak point of this model, but it may just indicate the presence of some underlying systematic error that can be corrected through further work. The integration of such a developed prediction model into existing frameworks could assist law enforcingauthorities in preventing poaching activities.

sted, utgiver, år, opplag, sider
2023. , s. 57
Serie
UMNAD ; 1417
Emneord [en]
Animal trajectory, Dynamic environment, Trajectory prediction, Machine learning, Regression Neural Network, Poaching, Wildlife conservation
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-211118OAI: oai:DiVA.org:umu-211118DiVA, id: diva2:1777041
Veileder
Examiner
Tilgjengelig fra: 2023-06-29 Laget: 2023-06-28 Sist oppdatert: 2023-06-29bibliografisk kontrollert

Open Access i DiVA

fulltext(23140 kB)812 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 23140 kBChecksum SHA-512
8fe7a8b0096aea65bf7966e2dfad82a6bced74b610257bcea937fb1f5f172cb3e63ffa2fc968827f4dbeae978841019c25e052cda7896d3fd51fa08207e60ba5
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 812 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 757 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf