Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Combining transaction and page view data for more accurate product recommendations
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. (Complex systems)
2023 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

Recommendation systems are primarily used in e-commerce and retail to guide the user in a vast space of available items by providing personalized recommendations that fit the user's interests and need. Numerous types of recommendation systems have been introduced over the years. The most recent development in the field is the sequential recommendation system. Sequential recommenders account for the order in which the user has interacted with items to infer the user's intent, allowing them to provide recommendations accordingly. The data analytic company Siftlab AB has already developed such a recommendation system; however, its application has been limited to transaction data(data depicting only purchases). As a result, the model cannot take advantage of the predictive values of different event types. This thesis introduces a weighted multi-type technique that allows Siftlab's recommendation model to leverage page views alongside purchases in data from an interior design store. We also developed tools and techniques, such as correlation and angle separation analysis, to enhance our examination of user-item behavior. Our research findings indicate that including page view events in training hurts recall, while their inclusion in the prediction stage yields slight improvements. We discovered a rapid decline in correlation between purchases and page views as we considered page views occurring relatively further back in time. Performing a time-based correlation analysis, it became evident that there is a robust time dependency between purchases and page views. Utilizing this time dependency, we enforced a time-dependent threshold on the page views we included in the prediction stage to eliminate irrelevant page view events, further enhancing the model's predictions. We also captured seasonalities phenomena distinctive for an interior design store. Although the result of this work might only be valid for a single data set, we anticipate our work to be the first step in the right direction since the technique we introduce here can be effortlessly adapted to analyze other event types in other data, thus uncovering patterns that can further elevate the model's performance.

sted, utgiver, år, opplag, sider
2023. , s. 28
Emneord [en]
Recommendation systems, machine learning, e-commerce
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-212785OAI: oai:DiVA.org:umu-212785DiVA, id: diva2:1787253
Fag / kurs
Examensarbete i teknisk fysik
Utdanningsprogram
Master of Science Programme in Engineering Physics
Presentation
2023-06-09, NAT.D.410, Naturvetarhuset, NA plan4,Umeå universitet, 901 87 Umeå, Umeå, 12:00 (engelsk)
Veileder
Examiner
Tilgjengelig fra: 2023-08-14 Laget: 2023-08-11 Sist oppdatert: 2023-08-14bibliografisk kontrollert

Open Access i DiVA

Soroush_master_thesis(1099 kB)181 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1099 kBChecksum SHA-512
807684b9ae0614e1d3edca68f758fe0bfc2307a00c39c1b333dbf81a98cca3de2450f9529cd08d045752fd93c2df5dfd703a59c3c3d047d3f4fb316e1f8e229c
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Rohani, Soroush
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 182 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 348 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf