Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Bayesian inference methods for parameter estimation: Implementation and benchmarking
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
2023 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

In this study, three implementations of the nested sampling algorithm have been implemented, in the programming language Rust, compared and benchmarked. These variations consist of a classic version, closely resembling the first appearance of the algorithm, a version that produces samples from a single ellipsoid, and a version tha tuses multiple ellipsoids to generate its samples. These versions where compared to each other and counterparts from two Python libraries, Nestle and pymultinest. Testing the variations of the algorithms found that the multi ellipsoids sampler is the most versatile alternative and when comparing wall clock time, The Rust implementation of the multi ellipsoid sampler ran up to 79 times faster than its Nestle counterpart and up to 51 times faster than pymultinest. Running the rust implementations in parallel with eight threads proved to be slower in most examples, but in computationally difficult problems, the single ellipsoid sampler received a speedup of up to 3.50 while the multi ellipsoid sampler got a speedup of up to 1.86 when running benchmarks with eight threads rather than one.

sted, utgiver, år, opplag, sider
2023. , s. 34
Serie
UMNAD ; 1433
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-213197OAI: oai:DiVA.org:umu-213197DiVA, id: diva2:1790456
Eksternt samarbeid
Sartorius Stedim Data Analytics AB
Presentation
(engelsk)
Veileder
Examiner
Tilgjengelig fra: 2023-08-23 Laget: 2023-08-22 Sist oppdatert: 2023-08-23bibliografisk kontrollert

Open Access i DiVA

fulltext(2846 kB)270 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2846 kBChecksum SHA-512
c54408ceb76efb740e67c345396a11ebf6beba79bed364910164b1443c2b66bf936bc3265e2c5f44342a1f9192232680bccee2c6beab0741d961d3237a6b66ef
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 272 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 311 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf