Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Mapping of Dependent Structural Responses on a Prestressed Concrete Bridge using Machine Learning Regression Analysis and Historical Data: A Comparison of Different Non-linear Regression Approaches
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
2023 (engelsk)Student paper first term, 20 poäng / 30 hpOppgave
Abstract [en]

Prestressed concrete bridges are susceptible to deterioration over time which might significantly affect their capacity and overall performance. In previous decades, infrastructure owners have found that continuous monitoring of these assets is a valuable tool for their management as it facilitates the decision-making process regarding the intervention strategies required. However, as data acquisition and measurement technologies have advanced tremendously in recent years, the amount of information that can be retrieved daily is not easy to manage and analyse. This study presents an evaluation of the effectiveness between different machine learning methods regarding prediction and interpretation of structural responses as well as the feasibility of mapping an independent variable, aspects such as metric performance, learning curves and residual plots was analysed. A comparison was made on the machine learning algorithms performing regression analysis where each model scored over 98% in the R-square metric. This study utilised data collected from a prestressed concrete bridge located in Autio, northern Sweden, that has been continuously monitored for more than three years.

sted, utgiver, år, opplag, sider
2023. , s. 85
Serie
UMNAD ; 1441
Emneord [en]
Prestressed Concrete Bridges, Structural health Monitoring, Machine Learning, Regression analysis, Infrastructure management
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-214572DOI: DOI: 10.13140/RG.2.2.15748.91524OAI: oai:DiVA.org:umu-214572DiVA, id: diva2:1798751
Eksternt samarbeid
Luleå Tekniska Universitet (LTU) - Structural and Fire Engineering, Dept. of Civil, Environmental and Natural Resources Engineering (SBN)
Utdanningsprogram
Master of Science Programme in Computing Science and Engineering
Presentation
2023-08-25, Nat.D.410, Umeå University SE-901 87 Umeå Sweden, Västerbotten, 10:14 (engelsk)
Veileder
Examiner
Tilgjengelig fra: 2023-09-20 Laget: 2023-09-20 Sist oppdatert: 2023-09-20bibliografisk kontrollert

Open Access i DiVA

fulltext(65626 kB)637 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 65626 kBChecksum SHA-512
83c88764abb491763414d3a91d07d0748e3073c38796fc8132259cf70d836411f7f2fcf14de8e93370a186b79d0a9e49b011d02ff3a428aa9a65b9374fc442ee
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Coric, Vedad
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 637 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 326 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf