Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Evaluation of Tree Planting using Computer Vision models YOLO and U-Net
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
2023 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

Efficient and environmentally responsible tree planting is crucial to sustainable land management. Tree planting processes involve significant machinery and labor, impacting efficiency and ecosystem health. In response, Södra Skogsägarna introduced the BraSatt initiative to develop an autonomous planting vehicle called E-Beaver. This vehicle aims to simultaneously address efficiency and ecological concerns by autonomously planting saplings in clear-felled areas. BIT ADDICT, partnering with Södra Skogsägarna, is re- sponsible for developing the control system for E-Beaver’s autonomous navigation and perception. 

In this thesis work, we examine the possibility of using the computer vision models YOLO and U-Net for detecting and segmenting newly planted saplings in a clear felled area. We also compare the models’ performances with and without augmenting the dataset to see if that would yield better-performing models. RGB and RGB-D images were gath- ered with the ZED 2i stereo camera. Two different models are presented, one for detecting saplings in RGB images taken with a top-down perspective and the other for segmenting saplings trunks from RGB-D images taken with a side perspective. The purpose of this the- sis work is to be able to use the models for evaluating the plating of newly planted saplings so that autonomous tree planting can be done. 

The outcomes of this research showcase that YOLOv8s has great potential in detecting tree saplings from a top-down perspective and the YOLOv8s-seg models in segmenting sapling trunks. The YOLOv8s-seg models performed significantly better on segmenting the trunks compared to U-Net models. 

The research contributes insights into using computer vision for efficient and ecologi- cally sound tree planting practices, poised to reshape the future of sustainable land man- agement. 

sted, utgiver, år, opplag, sider
2023.
Serie
UMNAD ; 1442
Emneord [en]
Unet, YOLOv8, Autonomous tree planting
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-214842OAI: oai:DiVA.org:umu-214842DiVA, id: diva2:1801598
Eksternt samarbeid
Bit Addict
Utdanningsprogram
Master of Science Programme in Computing Science and Engineering
Veileder
Examiner
Prosjekter
BraSattTilgjengelig fra: 2023-10-03 Laget: 2023-10-02 Sist oppdatert: 2023-10-03bibliografisk kontrollert

Open Access i DiVA

fulltext(1966 kB)568 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1966 kBChecksum SHA-512
c0cef731e54231653259348de7bc8b5c44d89d43378b3c6c9e6128104cfc5aea4e03c4befb5a7774028e4060b72c56290abe315fbc1c1370617db74e1436ee07
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 569 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 1176 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf