Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Detecting Playing Styles In Swedish Football: A Clustering Approach
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
2023 (engelsk)Independent thesis Advanced level (professional degree), 20 poäng / 30 hpOppgave
Abstract [en]

This thesis presents an investigation regarding the playing styles of football teams in Allsvenskan, the biggest football competition in Sweden, using clustering analysis. The research makes use of data pre-processing, feature engineering, and K-Means clustering to identify different, distinct, clusters that aim to represent different playing philosophies. The dataset undergoes pre-processing, including cleaning and normalization, to ensure good quality for performing clustering analysis. Plenty of features are, with caution, engineered to capture dominance in possession, physical intensity, and defense qualities. The resulting clusters reveal various playing styles, ranging from possession-based teams to physically intense counter-attacking teams. The practical implications of the analysis are discussed, highlighting the value for Football Analytics Sweden and their clients in areas such as team composition and match strategies. Future work suggestions include investigating how playing styles change when teams take the lead or concede, as well as using the model with real-time data for media purposes. The framework delivery to the company includes Python scripts for data processing and visualization, as well as the clustering model implementation. The comprehensive report documents the methodology, results, and practical implications. This thesis contributes to football analytics by uncovering playing styles, empowering decision-making processes, and providing a foundation for future research.

sted, utgiver, år, opplag, sider
2023.
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-223549OAI: oai:DiVA.org:umu-223549DiVA, id: diva2:1852631
Utdanningsprogram
Master of Science in Engineering and Management
Veileder
Examiner
Tilgjengelig fra: 2024-04-19 Laget: 2024-04-18 Sist oppdatert: 2024-07-02bibliografisk kontrollert

Open Access i DiVA

fulltext(14093 kB)927 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 14093 kBChecksum SHA-512
e427a42a886d7ca5400b10b1bf5d8ddd20d18852de5c602805257428e9814e0a00e33b1e40d2b4f4e86a62ee920a33a53a841af5a7902cb6528db6f377230b75
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 927 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 1692 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf