Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Weather Impact on Energy Consumption For Electric Trucks: Predictive modelling with Machine Learning
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
2024 (engelsk)Independent thesis Advanced level (professional degree), 20 poäng / 30 hpOppgaveAlternativ tittel
Väders påverkan på energikonsumption för elektriska lastbilar : Prediktiv modellering med maskininlärning (svensk)
Abstract [en]

 Companies in the transporting sector are undergoing an important transformation of electrifyingtheir fleets to meet the industry’s climate targets. To meet customer’s requests, keep its marketposition, and to contribute to a sustainable transporting industry, Scania needs to be in frontof the evolution. One aspect of this is to attract customers by providing accurate information anddetecting customer’s opportunities for electrification. Understanding the natural behavior of weatherparameters and their impact on energy consumption is crucial for providing accurate simulations ofhow daily operations would appear with an electric truck. The aim of this thesis is to map weatherparameters impact on energy consumption and to get an understanding of the correlations betweenenergy consumption and dynamic weather data.

ML and deep learning models have undergone training using historical data from operations per-formed by Scania’s Battery Electric Vehicles(BEV). These models have been assessed against eachother to ensure that they are robust and accurate. Utilizing the trained models ability to providereliable consumption predictions based on weather, we can extract information and patterns aboutconsumption derived from customised weather parameters.

The results show several interesting correlations and can quantify the impact of weather parametersunder certain conditions. Temperature is a significant factor that has a negative correlation withenergy consumption while other factors like precipitation and humidity prove less clear results. Byinteracting parameters with each other, some new results were found. For instance, the effect ofhumidity is clarified under certain temperatures. Wind speed also turns out to be an importantfactor with a positive correlation to energy consumption.

sted, utgiver, år, opplag, sider
2024. , s. 49
Emneord [en]
Energy Consumption, Weather Parameters, Machine Learning, XGBoost, LSTM, Convolutional Neural Network
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-226689OAI: oai:DiVA.org:umu-226689DiVA, id: diva2:1874010
Eksternt samarbeid
Scania AB
Utdanningsprogram
Master of Science in Engineering and Management
Veileder
Examiner
Tilgjengelig fra: 2024-06-20 Laget: 2024-06-19 Sist oppdatert: 2024-06-20bibliografisk kontrollert

Open Access i DiVA

Carlsson_Nordgren(3000 kB)277 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 3000 kBChecksum SHA-512
7dd5aa89164705a8de38b71d95193ed97097cc205a2ff0872645dcd5724129ab20ed4142bd78c3069e8857d06cff2df3fb673c72601b6de757894d5e72de2500
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Carlsson, RobertNordgren, Emrik
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 278 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 742 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf