Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Carbon-aware Scheduling in Kubernetes
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
2024 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

In recent years, escalating concerns over environmental sustainability have highlighted the urgent need to address excessive carbon emissions, which drive climate change and its detrimental effects, including severe weather, food shortages, and increased poverty. This thesis explores the implementation of carbon-aware scheduling within a Kubernetes cluster, aiming to minimize carbon emissions, and evaluating how the performance of the system is affected. Kubernetes, an open-source platform for automating the deployment, scaling, and management of containerized applications, offers a promising framework for integrating carbon-aware strategies. With the increase in the use of computing power, data centers have become a significant contributor to global carbon emissions due to their considerable energy consumption. By integrating carbon-aware strategies into Kubernetes, this study investigates the potential for reducing the carbon footprint of microservice-based applications. Microservices is an architectural style where the application is divided into small, independent services, each handling a specific function. This allows for greater flexibility, scalability, and ease of maintenance. This thesis proposes and develops a carbon-aware scheduler that tests various applications under different traffic loads to assess its effectiveness in reducing carbon emissions. The scheduler optimally allocates workloads to different geographical locations based on carbon intensity, aiming to leverage multiple data centers across the globe. Performing experiments within a controlled testbed environment demonstrates that the scheduler is able to reduce emissions effectively, up to 28.58%, although with trade-offs in response times and system performance during migration phases. This thesis contributes to the emerging field of green computing by providing a practical approach to carbon-aware scheduling in cloud environments, highlighting the balance between environmental impact and performance metrics. 

sted, utgiver, år, opplag, sider
2024.
Serie
UMNAD ; 1495
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-227248OAI: oai:DiVA.org:umu-227248DiVA, id: diva2:1878128
Eksternt samarbeid
Elastisys
Veileder
Examiner
Tilgjengelig fra: 2024-06-27 Laget: 2024-06-26 Sist oppdatert: 2024-06-27bibliografisk kontrollert

Open Access i DiVA

fulltext(1921 kB)412 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1921 kBChecksum SHA-512
c945ccffff2cceaaccb64d861e2ced7d602d715978fe8ab0f06bda88ef500e7099f99d1f6716d376bd78a2ae0bd5c55b620a6428e07837be65dc5b12c378dd71
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 412 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 1027 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf