Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
LLMs and RAG for FinancialData in the FinTech Domain
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
2025 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

Abstract. This thesis investigates the implementation and impact of Large Language Models (LLMs) and Retrieval Augmented Generation (RAG) in financial risk management. Through qualitative research methods and iterative prototype development in a financial institution, this thesis explores how these technologies can improve data accessibility and decision-making processes for risk management professionals. The findings reveal both the potential and challenges in the implementation of these technologies in financial environments. Although risk managers showed great enthusiasm and trust in the technology, successful implementation required substantial manual engineering effort in data normalization, semantic modeling, and query generation. Key challenges included handling ambiguous natural language queries and maintaining accuracy in financial calculations. The thesis demonstrates that while LLMs and RAG can improve data accessibility, their effective deployment requires careful attention to domain-specific requirements and human factors.The research contributes to the growing body of knowledge on practical applications of AI in financial services by providing insight into implementation challenges, user acceptance, and system design requirements. These findings have important implications for financial institutions considering similar implementations and suggest directions for future research to improve the reliability and effectiveness of AI-assisted financial risk management tools.

sted, utgiver, år, opplag, sider
2025.
Serie
UMNAD ; 1528
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-236103OAI: oai:DiVA.org:umu-236103DiVA, id: diva2:1942374
Eksternt samarbeid
Clear Street
Utdanningsprogram
Master of Science Programme in Computing Science and Engineering
Veileder
Examiner
Tilgjengelig fra: 2025-03-05 Laget: 2025-03-04 Sist oppdatert: 2025-03-05bibliografisk kontrollert

Open Access i DiVA

fulltext(288 kB)287 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 288 kBChecksum SHA-512
66047a58277b698c1aa787a76e071238f1f936a87e4262add7fae17c4d63af266596aa8d8c824f77b0376f7d81a63e5d974987f3ca738c738bae2e02795e91a3
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 287 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 621 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf