Umeå University's logo

umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Quantification, Mapping, and Predictive Modelling of Soil Organic Carbon in Upland Tundra Habitats of Abisko, Sweden
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och geovetenskap.
2025 (engelsk)Independent thesis Basic level (degree of Bachelor), 10 poäng / 15 hpOppgaveAlternativ tittel
Kvantifiering, kartläggning och prediktiv modellering av markens organiska kol i tundramiljöer, Abisko, Sverige. (svensk)
Abstract [en]

Northern high-latitude regions store large amounts of soil organic carbon (SOC) but are also experiencing significant climate change impacts. Increased temperature accelerates SOC decomposition while simultaneously driving vegetation shifts into previously barren areas, potentially increasing carbon storage. However, the effect of a warmer climate on SOC dynamics are not fully understood. To address this gap, more data are needed to refine Earth system models. This study quantifies SOC from 72 tundra soil samples collected near Abisko, Sweden, visualizes its spatial distribution, and assesses the effectiveness of predictive modelling approaches. SOC was quantified using loss on ignition (LOI) and three forest-based models incorporating digital elevation model (DEM) derivatives, UAV imagery, or a combination of both were tested. Model performance was assessed using mean squared error (MSE), coefficient of determination (R²), and variable importance metrics. The UAV-based model showed the highest predictive accuracy (MSE = 11.1, R² = 0.91 in validation), highlighting the value of high-resolution spectral data for SOC mapping. SOC storage varied significantly between habitats, with mesic heath, semiwetlands, and snowbed habitats containing the highest carbon stocks, while barren and dry heath habitats stored the least. This study demonstrates that UAV-based predictive modelling is a powerful tool for SOC estimation in tundra environments. However, data limitations and model uncertainties highlight the need for further refinement and increased sampling. These findings could contribute to improving carbon flux predictions and understanding ecosystem responses to climate change.

sted, utgiver, år, opplag, sider
2025. , s. 14
Emneord [en]
SOC, UAV, predictive modelling, remote sensing, tundra
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-236583OAI: oai:DiVA.org:umu-236583DiVA, id: diva2:1945005
Fag / kurs
Examensarbete i Naturgeografi för kandidatexamen
Utdanningsprogram
Bachelor of Science in Biology and Earthscience
Presentation
2025-01-31, 10:00
Veileder
Examiner
Tilgjengelig fra: 2025-03-19 Laget: 2025-03-17 Sist oppdatert: 2025-03-19bibliografisk kontrollert

Open Access i DiVA

fulltext(865 kB)35 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 865 kBChecksum SHA-512
e95462157efebe53f91bebe5d248fcae374d57c9d272c1e80e9fa32e4996355029b82ec2bf3c465ccaf53ac8bcc527f742dae088f72966e9d0f5663528d30bd1
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Willander, Elliot
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 35 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 226 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf