umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Avoidability of random arrays
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik. (Diskret matematik)
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
Abstract [en]

An n×n array that in each cell contains a subset of the symbols 1, . . . , n is avoidable if there exists a Latin square of order n such that no cell in the Latin square contains a symbol which belongs to the set of symbols in the corresponding cell of the array. Some results on deterministic conditions for avoidability of arrays have been found, but here we study the problem of having an array with randomly assigned subsets of C in its cells. This is equivalent to the problem of list-edge-coloring  with randomly assigned lists from the set {1, . . . , n}. We show that an array where each symbol appears in each cell with probability p will be avoidable with very high probability even if p is such that the expected number of symbols forbidden in each cell is slightly higher than what deterministic theorems can prove is avoidable.

Emneord [en]
Latin square, avoidable array, avoidability
HSV kategori
Forskningsprogram
matematik
Identifikatorer
URN: urn:nbn:se:umu:diva-36024OAI: oai:DiVA.org:umu-36024DiVA, id: diva2:351486
Tilgjengelig fra: 2010-09-15 Laget: 2010-09-14 Sist oppdatert: 2018-06-08bibliografisk kontrollert
Inngår i avhandling
1. On Latin squares and avoidable arrays
Åpne denne publikasjonen i ny fane eller vindu >>On Latin squares and avoidable arrays
2010 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis consists of the four papers listed below and a survey of the research area.

I Lina J. Andrén: Avoiding (m, m, m)-arrays of order n = 2k

II Lina J. Andrén: Avoidability of random arrays

III Lina J. Andr´en: Avoidability by Latin squares of arrays with even order

IV Lina J. Andrén, Carl Johan Casselgren and Lars-Daniel Öhman: Avoiding arrays of odd order by Latin squares

Papers I, III and IV are all concerned with a conjecture by Häggkvist saying that there is a constant c such that for any positive integer n, if m ≤ cn, then for every n × n array A of subsets of {1, . . . , n} such that no cell contains a set of size greater than m, and none of the elements 1, . . . , n belongs to more than m of the sets in any row or any column of A, there is a Latin square L on the symbols 1, . . . , n such that there is no cell in L that contains a symbol that belongs to the set in the corresponding cell of A. Such a Latin square is said to avoid A. In Paper I, the conjecture is proved in the special case of order n = 2k . Paper III improves on the techniques of Paper I, expanding the proof to cover all arrays of even order. Finally, in Paper IV, similar methods are used together with a recoloring theorem to prove the conjecture for all orders. Paper II considers another aspect of the problem by asking to what extent way a deterministic result concerning the existence of Latin squares that avoid certain arrays can be used when the sets in the array are assigned randomly.

Abstract [sv]

Denna avhandling inehåller de fyra nedan uppräknade artiklarna, samt en översikt av forskningsområdet.

I Lina J. Andrén: Avoiding (m, m, m)-arrays of order n = 2k

II Lina J. Andrén: Avoidability of random arrays

III Lina J. Andrén: Avoidability by Latin squares of arrays with even order

IV Lina J. Andrén, Carl Johan Casselgren and Lars-Daniel Öhman: Avoiding arrays of odd order by Latin squares

Artikel I, III och IV behandlar en förmodan av Häggkvist, som säger att det finns en konstant c sådan att för varje positivt heltal n gäller att om m ≤ cn så finns för varje n × n array A av delmängder till {1, . . . ,n} sådan att ingen cell i A i innehåller fler än m symboler, och ingen symbol förekommer i fler än m celler i någon av raderna eller kolumnerna, så finns en latinsk kvadrat L sådan att ingen cell i L innehåller en symbol som förekommer i motsvarande cell i A. En sådan latinsk kvadrat sägs undvika A. Artikel I innehåller ett bevis av förmodan i specialfallet n = 2k. Artikel III använder och utökar metoderna i Artikel I till ett bevis av förmodan för alla latinska kvadrater av jämn ordning. Förmodan visas slutligen för samtliga ordningar i Artikel IV, där bevismetoden liknar den som finns i i Artikel I och III tillsammans med en omfärgningssats. Artikel II behandlar en annan aspekt av problemet genom att undersöka vad ett deterministiskt resultat om existens av latinska kvadrater som undviker en viss typ av array säger om arrayer där mängderna tilldelas slumpmässigt.

sted, utgiver, år, opplag, sider
Umeå: Umeå universitet, Instituionen för matematik och matematisk statisitik, 2010. s. 31
Serie
Doctoral thesis / Umeå University, Department of Mathematics, ISSN 1102-8300 ; 46
Emneord
Latin square, avoidability, avoidable array
HSV kategori
Forskningsprogram
matematik
Identifikatorer
urn:nbn:se:umu:diva-36040 (URN)978-91-7459-060-9 (ISBN)
Disputas
2010-10-07, MA121, MIT-huset, Umeå universitet, Umeå, 11:04 (svensk)
Opponent
Veileder
Tilgjengelig fra: 2010-09-16 Laget: 2010-09-15 Sist oppdatert: 2018-06-08bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Personposter BETA

Andrén, Lina J.

Søk i DiVA

Av forfatter/redaktør
Andrén, Lina J.
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 641 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf