umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Validated and predictive processing of gas chromatography-mass spectra screening studies, diagnostics and metabolite pattern verification
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin, Medicin.
Umeå universitet, Medicinska fakulteten, Institutionen för kirurgisk och perioperativ vetenskap, Idrottsmedicin.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
Vise andre og tillknytning
2012 (engelsk)Inngår i: Metabolites, ISSN 2218-1989, E-ISSN 2218-1989, Vol. 2, nr 4, 796-817 s.Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The suggested approach makes it feasible to screen large metabolomics data, sample sets with retained data quality or to retrieve significant metabolic information from small sample sets that can be verified over multiple studies. Hierarchical multivariate curve resolution (H-MCR), followed by orthogonal partial least squares discriminant analysis (OPLS-DA) was used for processing and classification of gas chromatography/time of flight mass spectrometry (GC/TOFMS) data characterizing human serum samples collected in a study of strenuous physical exercise. The efficiency of predictive H-MCR processing of representative sample subsets, selected by chemometric approaches, for generating high quality data was proven. Extensive model validation by means of cross-validation and external predictions verified the robustness of the extracted metabolite patterns in the data. Comparisons of extracted metabolite patterns between models emphasized the reliability of the methodology in a biological information context. Furthermore, the high predictive power in longitudinal data provided proof for the potential use in clinical diagnosis. Finally, the predictive metabolite pattern was interpreted physiologically, highlighting the biological relevance of the diagnostic pattern.

sted, utgiver, år, opplag, sider
M D P I AG , 2012. Vol. 2, nr 4, 796-817 s.
Emneord [en]
metabolomics, chemometrics, information, large data, GC/MS, curve resolution, diagnosis
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-62181DOI: 10.3390/metabo2040796OAI: oai:DiVA.org:umu-62181DiVA: diva2:575544
Tilgjengelig fra: 2012-12-10 Laget: 2012-12-10 Sist oppdatert: 2017-12-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Thysell, ElinChorell, ElinSvensson, MichaelJonsson, PärAntti, Henrik
Av organisasjonen
I samme tidsskrift
Metabolites

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 135 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf