umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A chemometrics toolbox based on projections and latent variables
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. (Computational Life Science Cluster (CLiC))
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
2014 (engelsk)Inngår i: Journal of Chemometrics, ISSN 0886-9383, E-ISSN 1099-128X, Vol. 28, nr 5, s. 332-346Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

A personal view is given about the gradual development of projection methods-also called bilinear, latent variable, and more-and their use in chemometrics. We start with the principal components analysis (PCA) being the basis for more elaborate methods for more complex problems such as soft independent modeling of class analogy, partial least squares (PLS), hierarchical PCA and PLS, PLS-discriminant analysis, Orthogonal projection to latent structures (OPLS), OPLS-discriminant analysis and more. From its start around 1970, this development was strongly influenced by Bruce Kowalski and his group in Seattle, and his realization that the multidimensional data profiles emerging from spectrometers, chromatographs, and other electronic instruments, contained interesting information that was not recognized by the current one variable at a time approaches to chemical data analysis. This led to the adoption of what in statistics is called the data analytical approach, often called also the data driven approach, soft modeling, and more. This approach combined with PCA and later PLS, turned out to work very well in the analysis of chemical data. This because of the close correspondence between, on the one hand, the matrix decomposition at the heart of PCA and PLS and, on the other hand, the analogy concept on which so much of chemical theory and experimentation are based. This extends to numerical and conceptual stability and good approximation properties of these models. The development is informally summarized and described and illustrated by a few examples and anecdotes.

sted, utgiver, år, opplag, sider
John Wiley & Sons, 2014. Vol. 28, nr 5, s. 332-346
Emneord [en]
Chemometrics, Latent variables, OPLS, PLS, Projection methods
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-86943DOI: 10.1002/cem.2581ISI: 000335520900003OAI: oai:DiVA.org:umu-86943DiVA, id: diva2:704972
Tilgjengelig fra: 2014-03-13 Laget: 2014-03-13 Sist oppdatert: 2018-06-08bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Trygg, JohanWold, Svante

Søk i DiVA

Av forfatter/redaktør
Trygg, JohanWold, Svante
Av organisasjonen
I samme tidsskrift
Journal of Chemometrics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 542 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf