umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Postnatal overfeeding promotes early onset and exaggeration of high-fat diet-induced nonalcoholic fatty liver disease through disordered hepatic lipid metabolism in rats
Vise andre og tillknytning
2014 (engelsk)Inngår i: Journal of Nutritional Biochemistry, ISSN 0955-2863, E-ISSN 1873-4847, Vol. 25, nr 11, s. 1108-1116Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Exposure to overnutrition in critical or sensitive developmental periods may increase the risk of developing obesity and metabolic syndrome in adults. Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome, but the relationship among postnatal nutrition, lipid metabolism, and NAFLD progression during development remains poorly understood. Here we investigated in a rat model whether postnatal overfeeding increases susceptibility to NAFLD in response to a high-fat diet. Litters from Sprague-Dawley dams were culled to three (small litters) or ten (normal litters) pups and then weaned onto a standard or high-fat diet at postnatal day 21 to generate normal-litter, small-litter, normal-litter/high-fat, and small-litter/high-fat groups. At age 16 weeks, the small-litter and both high-fat groups showed obesity, dyslipidemia, and insulin resistance. Hepatic disorders appeared earlier in the small-litter/high-fat rats with greater liver mass gain and higher hepatic triglycerides and steatosis score versus normal-litter/high-fat rats. Hepatic acetyl-CoA carboxylase activity and mRNA expression were increased in small-litter rats and aggravated in small-litter/high-fat rats but not in normal-litter/high-fat rats. The high expression in small-litter/high-fat rats coincided with high sterol regulatory element-binding protein-1c mRNA and protein expression. However, mRNA expression of enzymes involved in hepatic fatty acid oxidation (carnitine palmitoyltransferase 1) and output (microsomal triglyceride transfer protein) was decreased under a high-fat diet regardless of litter size. In conclusion, overfeeding related to small-litter rearing during lactation contributes to the NAFLD phenotype when combined with a high-fat diet, possibly through up-regulated hepatic lipogenesis. (C) 2014 Elsevier Inc. All rights reserved.

sted, utgiver, år, opplag, sider
Elsevier, 2014. Vol. 25, nr 11, s. 1108-1116
Emneord [en]
Early overfeeding, Liver, High-fat diet, Lipid metabolism, Nonalcoholic fatty liver disease, Rat
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-96948DOI: 10.1016/j.jnutbio.2014.06.010ISI: 000344205600002OAI: oai:DiVA.org:umu-96948DiVA, id: diva2:779205
Tilgjengelig fra: 2015-01-12 Laget: 2014-12-05 Sist oppdatert: 2018-06-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Burén, Jonas

Søk i DiVA

Av forfatter/redaktør
Burén, Jonas
Av organisasjonen
I samme tidsskrift
Journal of Nutritional Biochemistry

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 195 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf