umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Geometry of spaces for matrix polynomial Fiedler linearizations
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
Universite catholique de Louvain, Belgium.
2015 (engelsk)Rapport (Annet vitenskapelig)
Abstract [en]

We study how small perturbations of matrix polynomials may change their elementary divisors and minimal indices by constructing the closure hierarchy graphs (stratifications) of orbits and bundles of matrix polynomial Fiedler linearizations. We show that the stratifica-tion graphs do not depend on the choice of Fiedler linearization which means that all the spaces of the matrix polynomial Fiedler lineariza-tions have the same geometry (topology). The results are illustrated by examples using the software tool StratiGraph.

sted, utgiver, år, opplag, sider
2015. , s. 28
Serie
Report / UMINF, ISSN 0348-0542 ; 15.17
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-111639OAI: oai:DiVA.org:umu-111639DiVA, id: diva2:872399
Forskningsfinansiär
Swedish Research Council, E0485301eSSENCE - An eScience CollaborationTilgjengelig fra: 2015-11-18 Laget: 2015-11-18 Sist oppdatert: 2018-06-07bibliografisk kontrollert
Inngår i avhandling
1. Tools for Structured Matrix Computations: Stratifications and Coupled Sylvester Equations
Åpne denne publikasjonen i ny fane eller vindu >>Tools for Structured Matrix Computations: Stratifications and Coupled Sylvester Equations
2015 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Developing theory, algorithms, and software tools for analyzing matrix pencils whose matrices have various structures are contemporary research problems. Such matrices are often coming from discretizations of systems of differential-algebraic equations. Therefore preserving the structures in the simulations as well as during the analyses of the mathematical models typically means respecting their physical meanings and may be crucial for the applications. This leads to a fast development of structure-preserving methods in numerical linear algebra along with a growing demand for new theories and tools for the analysis of structured matrix pencils, and in particular, an exploration of their behaviour under perturbations. In many cases, the dynamics and characteristics of the underlying physical system are defined by the canonical structure information, i.e. eigenvalues, their multiplicities and Jordan blocks, as well as left and right minimal indices of the associated matrix pencil. Computing canonical structure information is, nevertheless, an ill-posed problem in the sense that small perturbations in the matrices may drastically change the computed information. One approach to investigate such problems is to use the stratification theory for structured matrix pencils. The development of the theory includes constructing stratification (closure hierarchy) graphs of orbits (and bundles) that provide qualitative information for a deeper understanding of how the characteristics of underlying physical systems can change under small perturbations. In turn, for a given system the stratification graphs provide the possibility to identify more degenerate and more generic nearby systems that may lead to a better system design.

We develop the stratification theory for Fiedler linearizations of general matrix polynomials, skew-symmetric matrix pencils and matrix polynomial linearizations, and system pencils associated with generalized state-space systems. The novel contributions also include theory and software for computing codimensions, various versal deformations, properties of matrix pencils and matrix polynomials, and general solutions of matrix equations. In particular, the need of solving matrix equations motivated the investigation of the existence of a solution, advancing into a general result on consistency of systems of coupled Sylvester-type matrix equations and blockdiagonalizations of the associated matrices.

sted, utgiver, år, opplag, sider
Umeå: Umeå universitet, 2015. s. 29
Serie
Report / UMINF, ISSN 0348-0542 ; 15.18
HSV kategori
Identifikatorer
urn:nbn:se:umu:diva-111641 (URN)978-91-7601-379-3 (ISBN)
Disputas
2015-12-11, MA 121 MIT-building, Umeå universitet, Umeå, 13:00 (engelsk)
Opponent
Veileder
Forskningsfinansiär
Swedish Research Council, E0485301Swedish Research Council, A0581501eSSENCE - An eScience Collaboration
Tilgjengelig fra: 2015-11-20 Laget: 2015-11-18 Sist oppdatert: 2018-06-07bibliografisk kontrollert

Open Access i DiVA

fulltext(2276 kB)217 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2276 kBChecksum SHA-512
721b40f4c7bdaf70ee6f78ea90b2ee9a8bb3f9228197b5f4e36837fcf3f2dadb2cf5fc36b5441031d7affb51396c8e8b462fbca03cefb49f040cb9c1ef8ea851
Type fulltextMimetype application/pdf

Personposter BETA

Dmytryshyn, AndriiJohansson, StefanKågström, Bo

Søk i DiVA

Av forfatter/redaktør
Dmytryshyn, AndriiJohansson, StefanKågström, Bo
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 217 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 942 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf