umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Semi-Automatic Image Labelling Using Depth Information
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. Australian National University.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
2015 (engelsk)Inngår i: Computers, ISSN 2073-431X, E-ISSN 2073-431X, Vol. 4, nr 2, s. 142-154Artikkel i tidsskrift (Fagfellevurdert) Published
Resurstyp
Text
Abstract [en]

Image labeling tools help to extract objects within images to be used as ground truth for learning and testing in object detection processes. The inputs for such tools are usually RGB images. However with new widely available low-cost sensors like Microsoft Kinect it is possible to use depth images in addition to RGB images. Despite many existing powerful tools for image labeling, there is a need for RGB-depth adapted tools. We present a new interactive labeling tool that partially automates image labeling, with two major contributions. First, the method extends the concept of image segmentation from RGB to RGB-depth using Fuzzy C-Means clustering, connected component labeling and superpixels, and generates bounding pixels to extract the desired objects. Second, it minimizes the interaction time needed for object extraction by doing an efficient segmentation in RGB-depth space. Very few clicks are needed for the entire procedure compared to existing, tools. When the desired object is the closest object to the camera, which is often the case in robotics applications, no clicks at all are required to accurately extract the object.

sted, utgiver, år, opplag, sider
2015. Vol. 4, nr 2, s. 142-154
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-112769DOI: 10.3390/computers4020142ISI: 000358280100004OAI: oai:DiVA.org:umu-112769DiVA, id: diva2:882849
Tilgjengelig fra: 2015-12-15 Laget: 2015-12-14 Sist oppdatert: 2018-06-07bibliografisk kontrollert

Open Access i DiVA

fulltext(5285 kB)205 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 5285 kBChecksum SHA-512
feaeede063f0d7ad831a37e9ee7834c5ac0d7a9bc1e0e2b5e598ba6fe986c566a4ade8d811ce35d4e0c249d51ea1e90cbc36eabe1b1e3d7640bb92a2a1029f03
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Pordel, MostafaHellström, Thomas

Søk i DiVA

Av forfatter/redaktør
Pordel, MostafaHellström, Thomas
Av organisasjonen
I samme tidsskrift
Computers

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 205 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 256 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf