umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
GDP Growth Rate Nowcasting and Forecasting
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
2017 (Engelska)Självständigt arbete på avancerad nivå (yrkesexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

The main purpose of this project was to help Swedbank get a better understandingof how gross domestic product growth rate develops in the future froma data set of macroeconomic variables. Since GDP values are released long aftera quarter has ended Swedbank would like to have a model that could predictupcoming GDP from these data sets. This was solved by a combination ofgrowth rate predictions from a dynamic factor model, a vector autoregressivemodel and two machine learning models. The predictions were combined usinga weighting method called system averaging model where the model predictionwith least historical error receives the largest weight in the nal future prediction.In previous work a simple moving average model has been implementedto achieve this eect however there are several aws in a simple moving averagemodel. Most of these defects could in theory be avoided by using an exponentialweighting scheme instead. This resulted in the use of an exponentialweighting method that is used to calculate weights for future predictions. Themain conclusions from this project were that some predictions could get betterwhen removing bad performing models which had too large of a weight. Puttingtoo high weight on a single well performing model is also not optimal since thepredictions could get very unstable because of varying model performance. Theexponential weighting scheme worked well for some predictions however whenthe parameter , that controls how the weight is distributed between recent andhistorical errors, got too small a problem arose. Too few values were used toform the nal weights for the prediction and the estimate got unsteady results.

Ort, förlag, år, upplaga, sidor
2017.
Nationell ämneskategori
Matematisk analys Beräkningsmatematik Sannolikhetsteori och statistik Nationalekonomi
Identifikatorer
URN: urn:nbn:se:umu:diva-132951OAI: oai:DiVA.org:umu-132951DiVA, id: diva2:1084527
Externt samarbete
Swedbank
Ämne / kurs
Examensarbete i teknisk fysik
Utbildningsprogram
Civilingenjörsprogrammet i Teknisk fysik
Tillgänglig från: 2017-03-27 Skapad: 2017-03-25 Senast uppdaterad: 2017-03-27Bibliografiskt granskad

Open Access i DiVA

fulltext(4767 kB)200 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 4767 kBChecksumma SHA-512
43678c7e32b57cf2021a5b88cb3fdb0bad6ddb96b5c01c88478e16e7daa9bdd57e49d409bb76c1f9f47d3dba0d08b432b924db7b162fec1a3cbfb0aa1a4c8a15
Typ fulltextMimetyp application/pdf

Av organisationen
Institutionen för fysik
Matematisk analysBeräkningsmatematikSannolikhetsteori och statistikNationalekonomi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 200 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 713 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf