umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Classification of Heart Sounds with Deep Learning
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
2018 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

Health care is becoming more and more digitalized and examinations of patients from a distance are closer to reality than fiction. One of these examinations would be to automatically classify a patient-recorded audiosegment of its heartbeats as healthy or pathological. This thesis examines how it can be achieved by examining different kinds of neural networks; convolutional neural networks (CNN) and long short-term memory networks (LSTM). The theory of artificial neural networks is explained. With this foundation, the feed forward CNN and the recurrent LSTM-network have their methods described. Before these methods can be used, the required pre-processing has to be completed, which is different for the two types of networks. Using this theory, the process of how to implement the networks in Matlab is explained. Different CNN:s are compared to each other, then the best performing CNN is compared to the LSTM-network. When comparing the two different networks to each other, cross validation is used to achieve the most correct result possible. The networks are compared by accuracy, least amount of training time and least amount of training data. A final resulti s presented, to show which type of network has the best performance, together with a discussion to explain the results. The CNN performed better than the LSTM-network in all aspects. A reflection on what could have been done differently to achieve a better result is posted.

Ort, förlag, år, upplaga, sidor
2018. , s. 52
Serie
UMNAD ; 1146
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
URN: urn:nbn:se:umu:diva-149699OAI: oai:DiVA.org:umu-149699DiVA, id: diva2:1223890
Externt samarbete
Västerbotten County Council Biomedical Engineering R&D
Utbildningsprogram
Civilingenjörsprogrammet i Teknisk datavetenskap
Handledare
Examinatorer
Tillgänglig från: 2018-06-26 Skapad: 2018-06-26 Senast uppdaterad: 2018-06-26Bibliografiskt granskad

Open Access i DiVA

fulltext(805 kB)720 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 805 kBChecksumma SHA-512
bcb1b484430a41b3c99452584ee965b5560ef59b677a6f049a058d13f0e5baecb931541b2dffb9feda6092ff18d657b23cf9131f49d27f2c6aa06eb7be1c7253
Typ fulltextMimetyp application/pdf

Av organisationen
Institutionen för datavetenskap
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 720 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 1334 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf