Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Program workload anomaly detection using graph weight distance
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
2018 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

Detection of errors and anomalies in program execution can be a crucial task to keep software functioning and secure. Since manual identification of anomalies can be time consuming, automated methods are needed. By modeling program execution as time-evolving call graphs, graph similarity measures can be used to differentiate normal program execution from abnormal. In this report, the similarity measure weight distance is measured for call graphs in a web server in attempt to detect abnormal workloads caused by denial-of-service (DoS) attacks and the malfunction of a feature. All test scenarios were constructed with simulated workloads. The results show that detection could be made for all scenarios with abnormal workloads with a maximum of one false positive. The detection method also shows resistance to gradual changes in normal workload over time. Due to results being highly dependant on how the target software is written and how it is normally used, more testing, preferably with non-simulated usage should be performed in ordert o fully evaluate the method.

Ort, förlag, år, upplaga, sidor
2018. , s. 36
Serie
UMNAD ; 1154
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
URN: urn:nbn:se:umu:diva-152814OAI: oai:DiVA.org:umu-152814DiVA, id: diva2:1258649
Externt samarbete
Omegapoint
Utbildningsprogram
Civilingenjörsprogrammet i Teknisk datavetenskap
Handledare
Examinatorer
Tillgänglig från: 2018-10-25 Skapad: 2018-10-25 Senast uppdaterad: 2018-10-25Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Av organisationen
Institutionen för datavetenskap
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 302 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf