umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Eхperimental muscle pain induced by injection of hypertonic saline: Comparative analysis of two PET studies
Umeå universitet, Medicinsk fakultet, Kirurgisk och perioperativ vetenskap.
Visa övriga samt affilieringar
Manuskript (Övrigt vetenskapligt)
Identifikatorer
URN: urn:nbn:se:umu:diva-4639OAI: oai:DiVA.org:umu-4639DiVA, id: diva2:143825
Tillgänglig från: 2005-08-23 Skapad: 2005-08-23 Senast uppdaterad: 2010-01-13Bibliografiskt granskad
Ingår i avhandling
1. Brain processing of experimental muscle pain and its interrelation with proprioception and muscle fatigue: positron emission tomography study
Öppna denna publikation i ny flik eller fönster >>Brain processing of experimental muscle pain and its interrelation with proprioception and muscle fatigue: positron emission tomography study
2005 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Chronic muscle pain is a significant medical and social problem and better understanding of the pathophysiological mechanisms involved is an important requirement for further development of diagnostics, treatment and rehabilitation methods. Experimental imaging studies have investigated functional neuroanatomy of different pain components. However, several aspects of brain mechanisms underlying brain processing of muscle pain remain unclear.

The general goal of the present thesis was to study functional brain anatomy of systems underlying perception of muscle pain, processing of proprioceptive information and maintenance of fatiguing muscle contractions with an emphasize on their possible interrelations.

Four series of experiment were carried out. Using an injection of hypertonic saline (HS) into the m. triceps to induce pain comparable with clinical muscle pain a significant activation of insula and putamen as well as decrease of activity in the temporal and occipital cortex in comparison with control stimulation were revealed. An advanced model of prolonged muscle pain were provided by the infusion of the HS during 20 minutes into m. erector spinae A complex dynamics of brain activity during the habituation to nociceptive stimulation was shown: initial activation of insula changed to decrease of activity in this and several other cortical areas. A conjunction analysis identified activations jointly significant in both experiments (despite localization of HS nociceptive stimulation) in the right insula, occipital and left parietal cortical areas. The study of brain activity in response to different modalities of prorioceptive inputs – passive movements, kinesthetic illusions and muscle vibration showed corresponding different patterns of activation in motor and somatosenory areas and temporal areas. Finally, the study of sustained isometric muscle contractions of various force levels and durations revealed that muscle fatigue is associated with contralateral activation of the motor and somatosensory areas and temporal areas and bilateral activation in the supplementary motor areas and cingular cortex, indicating that increased efforts needed to maintain required force and its eventual breakdown with fatigue might induce activation of additional cortical areas. Analysis of data obtained in all experimental series revealed that insula, secondary somatosensory and auditory areas are activated during both perception of muscle pain and processing of somatosensory afferentation.

In conclusion, this thesis has elucidated brain processing of muscle pain showing distributed, bilateral patterns comprised of activated structures predominantly attributed to the medial pain system and deactivated structures. Furthermore, initial and late phases of tonic muscle pain are associated with different brain reactions, namely initial activation of the insula followed by a significant bilateral decrease of activity at the late stage. Area of brain cortex located near lateral sulcus and comprised of secondary somatosensory cortex, posterior part of the insula and adjacent auditory cortex is engaged in the perception of muscle pain and processing of somatosensory afferentation as well as maintenance of fatiguing muscle contractions.

Förlag
s. 72
Nyckelord
Experimental muscle pain, Hypertonic saline, Kinesthesia, Proprioception, Movement, Vibration, Muscle fatigue, Brain, Imaging, Positron emission tomography, Regional cerebral blood flow
Identifikatorer
urn:nbn:se:umu:diva-570 (URN)
Disputation
2005-09-09, Stora föreläsningssalen, Arbetslivsinstitutet Umeå, 10:00 (Engelska)
Opponent
Tillgänglig från: 2005-08-23 Skapad: 2005-08-23 Senast uppdaterad: 2009-11-18Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Av organisationen
Kirurgisk och perioperativ vetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 48 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf