Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A multi-gene symbolic regression approach for predicting LGD: A benchmark comparative study
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
2023 (Engelska)Självständigt arbete på avancerad nivå (yrkesexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

Under the Basel accords for measuring regulatory capital requirements, the set of credit risk parameters probability of default (PD), exposure at default (EAD) and loss given default (LGD) are measured with own estimates by the internal rating based approach. The estimated parameters are also the foundation of understanding the actual risk in a banks credit portfolio. The predictive performance of such models are therefore interesting to examine. The credit risk parameter LGD has been seen to give low performance for predictive models and LGD values are generally hard to estimate. The main purpose of this thesis is to analyse the predictive performance of a multi-gene genetic programming approach to symbolic regression compared to three benchmark regression models. The goal of multi-gene symbolic regression is to estimate the underlying relationship in the data through a linear combination of a set of generated mathematical expressions. The benchmark models are Logit Transformed Regression, Beta Regression and Regression Tree. All benchmark models are frequently used in the area. The data used to compare the models is a set of randomly selected, de-identified loans from the portfolios of underlying U.S. residential mortgage-backed securities retrieved from International Finance Research. The conclusion from implementing and comparing the models is that, the credit risk parameter LGD is continued difficult to estimated, the symbolic regression approach did not yield a better predictive ability than the benchmark models and it did not seem to find the underlying relationship in the data. The benchmark models are more user-friendly with easier implementation and they all requires less calculation complexity than symbolic regression.

Ort, förlag, år, upplaga, sidor
2023. , s. 53
Nyckelord [en]
Symbolic regression, loss given default, credit risk, logit transformed regression, beta regression, multi-gene genetic programming, regression tree
Nationell ämneskategori
Matematik
Identifikatorer
URN: urn:nbn:se:umu:diva-210413OAI: oai:DiVA.org:umu-210413DiVA, id: diva2:1772213
Utbildningsprogram
Civilingenjörsprogrammet i industriell ekonomi
Handledare
Examinatorer
Tillgänglig från: 2023-06-21 Skapad: 2023-06-21 Senast uppdaterad: 2023-06-21Bibliografiskt granskad

Open Access i DiVA

fulltext(11093 kB)353 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 11093 kBChecksumma SHA-512
707b87b7617d2387cb476663369a824baf89175d54d196e13e99372e44f3e4cac686651e0d782628fa73e056bbdf765fbf840e9e119a09c2ac7a33f63397e37c
Typ fulltextMimetyp application/pdf

Av organisationen
Institutionen för matematik och matematisk statistik
Matematik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 353 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 462 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf