Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Classification of Cable Shoe Presses on an Embedded System Using a Neural Network Implemented by Hand
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
2023 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

Pressing cables with cable shoes currently involves the use of high pressure to ensure successful crimping. However, this approach lacks the ability to detect when the pressing has been completed. Elpress intends to develop a handheld tool that can classify cables in real-time and stop the pressing before unnecessary energy is lost. This project is trying to solve this by creating a neural network on an embedded system, which will learn on the device. 

In a previous project, transferring TensorFlow and Scikit-learn models to embedded systems proved ineffective due to the limited memory capacities of the embedded system and large machine-learning models. Therefore, the neural network was instead implemented by hand on the embedded system directly. The implemented neural network was compared with a Python implementation, as well as with two traditional methods: linear regression, and averaging. The comparison focused on performance and memory consumption. The neural network was designed with 12 input nodes, one hidden layer consisting of 12 nodes, and an output layer of 11 nodes.

The highest accuracy achieved by the neural network implemented in C was 80\%, which is also the lowest accuracy that the other methods achieved. The neural network in C does not achieve equal or better precision compared to the traditional methods. However, since the neural network implemented in Python achieves higher accuracy, it should in theory be possible for the neural network in C as well.

Ort, förlag, år, upplaga, sidor
2023. , s. 49
Serie
UMNAD ; 1420
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:umu:diva-211060OAI: oai:DiVA.org:umu-211060DiVA, id: diva2:1776620
Externt samarbete
Omicron Nord AB
Utbildningsprogram
Civilingenjörsprogrammet i Teknisk datavetenskap
Handledare
Examinatorer
Tillgänglig från: 2023-06-29 Skapad: 2023-06-28 Senast uppdaterad: 2023-06-29Bibliografiskt granskad

Open Access i DiVA

fulltext(2253 kB)195 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2253 kBChecksumma SHA-512
bde19ba2868d3922c54c63dff8b5c321a4df6de72cd1f4542daffa77a156044237aec5f9ce9379448c30a76612d7e8573c6759b74437fb35aa531535c485a424
Typ fulltextMimetyp application/pdf

Av organisationen
Institutionen för datavetenskap
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 195 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 393 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf