Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Unsupervised Anomaly Detection and Explainability for Ladok Logs
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
2023 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

Anomaly detection is the process of finding outliers in data. This report will explore the use of unsupervised machine learning for anomaly detection as well as the importance of explaining the decision making of the model. The project focuses on identifying anomalous behaviour in Ladok data from their frontend access logs, with emphasis on security issues, specifically attempted intrusion. This is done by implementing an anomaly detection model which consists of a stacked autoencoder and k-means clustering as well as examining the data using only k-means. In order to attempt to explain the decision making progress, SHAP is used. SHAP is a explainability model that measure the feature importance. The report will include an overview of the necessary theory of machine learning, anomaly detection and explainability, the implementation of the model as well as examine how to explain the process of the decision making in a black box model. Further, the results are presented and a discussion is held about how the models have performed on the data. Lastly, the report concludes whether the chosen approach has been appropriate and proposes how the work could be improved in future work. The study concludes that the results from this approach was not the desired outcome, and might therefore not be the most suitable.

Ort, förlag, år, upplaga, sidor
2023. , s. 37
Serie
UMNAD ; 1434
Nyckelord [en]
machine learing, anomaly detection, ml
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:umu:diva-213774OAI: oai:DiVA.org:umu-213774DiVA, id: diva2:1792306
Externt samarbete
Ladok
Utbildningsprogram
Civilingenjörsprogrammet i Teknisk datavetenskap
Handledare
Examinatorer
Tillgänglig från: 2023-08-29 Skapad: 2023-08-29 Senast uppdaterad: 2023-08-29Bibliografiskt granskad

Open Access i DiVA

fulltext(1555 kB)380 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1555 kBChecksumma SHA-512
82bbbe158ed97095ba75bf7ba1c4c0664efd4b7ccb72124558bd3f2aa0e61dcd27455a8b074843eb3906d109fd9a82c2cc063cda5f647623d97af1a1969f10c0
Typ fulltextMimetyp application/pdf

Av organisationen
Institutionen för datavetenskap
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 385 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 486 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf